
Bioinformatics Toolbox
For Use with MATLAB®

Computation

Visualization

Programming

Reference Guide
Version 2.1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Bioinformatics Toolbox Reference Guide
© COPYRIGHT 2003 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may
be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and
Documentation by, for, or through the federal government of the United States. By accepting
delivery of the Program or Documentation, the government hereby agrees that this software or
documentation qualifies as commercial computer software or commercial computer software
documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS
252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights
specified in this Agreement, shall pertain to and govern the use, modification, reproduction,
release, performance, display, and disclosure of the Program and Documentation by the federal
government (or other entity acquiring for or through the federal government) and shall supersede
any conflicting contractual terms or conditions. If this License fails to meet the government’s needs
or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Revision History:
May 2005 Online only New for Version 2.1 (Release 14SP2+)

Contents

Functions – Categorical List

1
Data Formats and Databases . 1-3

Sequence Conversion . 1-5

Sequence Statistics . 1-7

Sequence Utilities . 1-8

Pairwise Sequence Alignment . 1-10

Multiple Sequence Alignment . 1-11

Statistical Learning . 1-12

Protein Analysis . 1-13

Trace Tools . 1-14

Profile Hidden Markov Models . 1-15

Microarray File Formats . 1-16

Microarray Visualization . 1-17

Microarray Normalization and Filtering 1-18

Microarray Utility Functions . 1-19

Mass Spectrometry Preprocessing and Visualization . . 1-20

i

Scoring Matrices . 1-21

Phylogenetic Tree Tools . 1-22

Phylogenetic Tree Methods . 1-23

Graph Visualization Methods . 1-24

Tutorials, Demos, and Examples . 1-25

Functions — Alphabetical List

2

Properties — Alphabetical List

3

Index

ii Contents

1

Functions – Categorical List

This chapter is a reference for the functions in the Bioinformatics Toolbox.
Functions are grouped into the following categories.

“Data Formats and Databases”
(p. 1-3)

Get data from Web databases into
MATLAB and read and write to files
within MATLAB using specific data
formats.

“Sequence Conversion” (p. 1-5) Convert nucleotide and amino acid
sequences.

“Sequence Statistics” (p. 1-7) List of sequence statistics functions

“Sequence Utilities” (p. 1-8) List of sequence utilities functions

“Pairwise Sequence Alignment”
(p. 1-10)

List of pairwise sequence alignment
functions

“Multiple Sequence Alignment”
(p. 1-11)

“Statistical Learning” (p. 1-12) List of statistical functions.

“Protein Analysis” (p. 1-13) List of protein analysis functions.

“Trace Tools” (p. 1-14) List of functions for analysis of
nucleotide traces.

“Profile Hidden Markov Models”
(p. 1-15)

List of Hidden Markov Model
functions.

“Microarray File Formats” (p. 1-16) List of microarray file format
functions.

“Microarray Visualization” (p. 1-17) List of microarray visualization
functions.

1 Functions – Categorical List

“Microarray Normalization and
Filtering” (p. 1-18)

List of microarray normalization and
filtering functions.

“Microarray Utility Functions”
(p. 1-19)

List of microarray utility functions

“Mass Spectrometry Preprocessing
and Visualization” (p. 1-20)

Preprocess raw data mass
spectrometry data from instruments,
and analyze spectra to identify
patterns and compounds.

“Scoring Matrices” (p. 1-21) List of scoring matrices.

“Phylogenetic Tree Tools” (p. 1-22) List of functions for phylogenetic
tree analysis.

“Phylogenetic Tree Methods”
(p. 1-23)

List of methods for the phytree
object.

“Graph Visualization Methods”
(p. 1-24)

List of methods for the biograph
object.

“Tutorials, Demos, and Examples”
(p. 1-25)

Demonstrations for using the
Bioinformatic Toolbox functions with
real applications.

1-2

Data Formats and Databases

Data Formats and Databases
Use these functions to get data from Web data bases into MATLAB., use
these functions to read and write to files within MATLAB using specific data
formats.

blastread Read data from NCBI BLAST report
file

emblread Read data from EMBL file

fastaread Read data from FASTA file

fastawrite Write to file with FASTA format

galread Read microarray data from a
GenePix array list file

genbankread Read data from a GenBank file

genpeptread Read data from a GenPept file

geosoftread Read data from a Gene Expression
Omnibus (GEO) SOFT file

getblast Get BLAST report from NCBI Web
site

getembl Retrieve sequence information from
EMBL database

getgenbank Retrieve sequence information from
GenBank database

getgenpept Retrieve sequence information from
GenPept database

getgeodata Get Gene Expression Omnibus
(GEO) data

gethmmalignment Retrieve multiple aligned sequences
from the PFAM database

gethmmprof Retrieve profile hidden Markov
models from the PFAM database

gethmmtree Get phylogenetic tree data from
PFAM database

1-3

1 Functions – Categorical List

getpdb Retrieve protein structure data from
PDB database

getpir Retrieve sequence data from
PIR-PSD database

gprread Read microarray data from a
GenePix Results (GPR) file

imageneread Read microarray data from an
ImaGene Results file

jcampread Read JCAMP-DX formatted files

multialignread Read multiple sequence alignment
file

pdbread Read data from Protein Data Bank
(PDB) file

pfamhmmread Read data from a PFAM-HMM file

phytreeread Read phylogenetic tree files

pirread Read data from PIR file

scfread Read trace data from SCF file

sptread Read data from a SPOT file

1-4

Sequence Conversion

Sequence Conversion
Convert nucleotide and amino acid sequences

aa2int Convert an amino acid sequence from
a letter to an integer representation

aa2nt Convert amino acid sequence to
nucleotide sequence

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

baselookup Display nucleotide codes, integers,
names, and abbreviations

dna2rna Convert DNA sequence to RNA
sequence

dna2rna Convert DNA sequence to RNA
sequence

int2aa Convert amino acid sequence from
integer to letter representation

int2nt Convert nucleotide sequence from
integer to letter representation

nt2aa Convert nucleotide sequence to
amino acid sequence

nt2int Convert nucleotide sequence from
letter to integer representation

rna2dna Convert RNA sequence of nucleotides
to DNA sequence

seq2regexp Convert sequence with ambiguous
characters to regular expression

seqcomplement Calculate complementary strand of
nucleotide sequence

1-5

1 Functions – Categorical List

seqrcomplement Calculate reverse complement of a
nucleotide sequence

seqreverse Reverse the letters or numbers in a
nucleotide sequence

1-6

Sequence Statistics

Sequence Statistics
List of sequence statistics functions

aacount Count the amino acids in a sequence

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

basecount Count nucleotides in a sequence

baselookup Display nucleotide codes, integers,
names, and abbreviations

codonbias Calculate codon frequency for each
amino acid in a DNA sequence

codoncount Count codons in nucleotide sequence

cpgisland Locate CpG islands in a DNA
sequence

dimercount Count dimers in a sequence

isoelectric Estimate isoelectric point for amino
acid sequence

molweight Calculate molecular weight of amino
acid sequence

nmercount Count the number of n-mers in a
nucleotide or amino acid sequence

ntdensity Plot the density of nucleotides along
a sequence

seqshowwords Graphically display the words in a
sequence

seqwordcount Count the number of occurrences of
a word in a sequence

1-7

1 Functions – Categorical List

Sequence Utilities
List of sequence utilities functions.

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

baselookup Display nucleotide codes, integers,
names, and abbreviations

blastncbi Generate a remote BLAST request

cleave Cleave amino acid sequence with
enzyme

geneticcode Return nucleotide codon to amino
acid mapping

joinseq Join two sequences to produce the
shortest supersequence

palindromes Find palindromes in a sequence

pdbdistplot Visualize intermolecular distances
in PDB file

pdbplot Plot 3D protein structure

proteinplot Display characteristics for amino
acid sequences

ramachandran Draw Ramachandran plot for PDB
data

randseq Generate random sequence from
finite alphabet

rebasecuts Find restriction enzymes that cut a
protein sequence

restrict Split nucleotide sequence at specified
restriction site

revgeneticcode Get the reverse mapping for a
genetic code

seqconsensus Calculate a consensus sequence

1-8

Sequence Utilities

seqdisp Format long sequence output for
easy viewing

seqlogo Display sequence logo for nucleotide
and amino acid sequences

seqmatch Find matches for every string in a
library

seqprofile Calculate a sequence profile from a
set of multiply aligned sequences

seqshoworfs Display open reading frames in a
sequence

seqtool Open interactive tool to explore
biological sequences

1-9

1 Functions – Categorical List

Pairwise Sequence Alignment
List of pairwise sequence alignment functions

fastaread Read data from FASTA file

nwalign Globally align two sequences using
the Needleman-Wunsch algorithm

seqdotplot Create dot plot of two sequences

showalignment Display a sequence alignment with
color

swalign Locally align two sequences using
the Smith-Waterman algorithm

1-10

Multiple Sequence Alignment

Multiple Sequence Alignment
List of multiple sequence alignment functions.

fastaread Read data from FASTA file

multialign Align multiple sequences using
progressive method.

multialignread Read multiple sequence alignment
file

profalign Align two profiles using
Needleman-Wunsch global
alignment

showalignment Display a sequence alignment with
color

1-11

1 Functions – Categorical List

Statistical Learning
List of statistical functions

classperf Evaluated the performance of a
classifier

crossvalind Generate cross-validation indices

knnclassify Classify data using the
nearest–neighbor method

knnimpute Impute missing data using the
nearest-neighbor method

randfeatures Generate a randomized subset of
features

rankfeatures Rank key features by class
separability criteria

svmclassify Classify data using a support vector
machine

svmtrain Train a support vector machine
classifier

1-12

Protein Analysis

Protein Analysis
List of protein analysis functions.

aacount Count the amino acids in a sequence

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

atomiccomp Calculate atomic composition of a
protein

cleave Cleave amino acid sequence with
enzyme

isoelectric Estimate isoelectric point for amino
acid sequence

molweight Calculate molecular weight of amino
acid sequence

pdbdistplot Visualize intermolecular distances
in PDB file

pdbplot Plot 3D protein structure

proteinplot Display characteristics for amino
acid sequences

ramachandran Draw Ramachandran plot for PDB
data

rebasecuts Find restriction enzymes that cut a
protein sequence

1-13

1 Functions – Categorical List

Trace Tools
List of functions for analysis of nucleotide traces.

scfread Read trace data from SCF file

traceplot Draw nucleotide trace plots

1-14

Profile Hidden Markov Models

Profile Hidden Markov Models
List of Hidden Markov Model functions

gethmmalignment Retrieve multiple aligned sequences
from the PFAM database

gethmmprof Retrieve profile hidden Markov
models from the PFAM database

gethmmtree Get phylogenetic tree data from
PFAM database

hmmprofalign Align a query sequence to a profile
using hidden Markov model based
alignment

hmmprofestimate Estimate profile HMM parameters
using pseudocounts

hmmprofgenerate Generate a random sequence drawn
from the profile HMM

hmmprofmerge Concatenate the prealigned strings
of several sequences to a profile
HMM

hmmprofstruct Create a profile HMM structure

pfamhmmread Read data from a PFAM-HMM file

showhmmprof Plot an Hidden Markov Model
(HMM) profile

1-15

1 Functions – Categorical List

Microarray File Formats
List of microarray file format functions

affyread Read microarray data from
Affymetrix GeneChip file

galread Read microarray data from a
GenePix array list file

geosoftread Read data from a Gene Expression
Omnibus (GEO) SOFT file

getgeodata Get Gene Expression Omnibus
(GEO) data

gprread Read microarray data from a
GenePix Results (GPR) file

imageneread Read microarray data from an
ImaGene Results file

sptread Read data from a SPOT file

1-16

Microarray Visualization

Microarray Visualization
List of microarray visualization functions

clustergram Create dendrogram and heat map

clustergram Create dendrogram and heat map

maboxplot Display a box plot for microarray
data

maimage Display a spatial image for
microarray data

mairplot Display intensity versus ratio scatter
plot for microarray signals

maloglog Create a loglog plot of microarray
data

mapcaplot Create a Principal Component plot
of expression profile data

redgreencmap Display a red and green colormap

1-17

1 Functions – Categorical List

Microarray Normalization and Filtering
List of microarray normalization and filtering functions.

exprprofrange Calculate range of gene expression
profiles

exprprofvar Calculate variance of gene
expression profiles

geneentropyfilter Remove genes with low entropy
expression values

genelowvalfilter Remove gene profiles with low
absolute values

generangefilter Remove gene profiles with small
profile ranges

genevarfilter Filter genes with small profile
variance

malowess Smooth microarray data using the
Lowess method

manorm Normalize microarray data

quantilenorm performs quantile normalization
over multiple arrays

1-18

Microarray Utility Functions

Microarray Utility Functions
List of microarray utility functions.

probelibraryinfo Extract probe set library information
for probe results

probesetlink Link to NetAffx Web site

probesetlookup Look up gene name for probe set

probesetplot Plots values for Affymetrix CHP file
probe set

probesetvalues Extract probe set values from probe
results

1-19

1 Functions – Categorical List

Mass Spectrometry Preprocessing and Visualization
List of mass spectrometry functions to preprocess raw data from instruments
and analysis functions to identify compounds.

jcampread Read JCAMP-DX formatted files

msalign Align peaks in mass spectrum to
reference peaks

msbackadj Correct the baseline of a mass
spectrum

msheatmap Display color image for set of spectra

mslowess Smooth mass spectrum using
nonparametric method

msnorm Normalize set of mass spectra

msresample Resample a mass spectrometry
signal

mssgolay Smooth mass spectrum with
least-squares polynomial

msviewer Explore MS spectrum or set of
spectra with GUI

1-20

Scoring Matrices

Scoring Matrices
List of scoring matrices.

blosum Return a BLOSUM scoring matrix

dayhoff Return a Dayhoff scoring matrix

gonnet Return a Gonnet scoring matrix

nuc44 Return a NUC44 scoring matrix for
nucleotide sequences

pam Return a PAM scoring matrix

1-21

1 Functions – Categorical List

Phylogenetic Tree Tools
List of functions for phylogenetic tree analysis.

dnds Estimate synonymous and
nonsynonymous substitution
rates

dndsml Estimate
synonymous-nonsynonymous
substitution rates by the maximum
likelihood method

gethmmtree Get phylogenetic tree data from
PFAM database

phytreeread Read phylogenetic tree files

phytreetool View, edit, and explore phylogenetic
tree data

phytreewrite Write phylogenetic tree object to
Newick formatted file

seqlinkage Construct phylogenetic tree from
pairwise distances

seqneighjoin Neighbor-joining method for
phylogenetic tree reconstruction

seqpdist Calculate pairwise distance between
sequences

1-22

Phylogenetic Tree Methods

Phylogenetic Tree Methods
List of methods for the phytree object.

get (phytree) Get information about a phylogenetic
tree object

getbyname (phytree) Select branches and leaves from a
phytree object

getcanonical (phytree) Calculate the canonical form of a
phylogenetic tree

getnewickstr (phytree) Create Newick formatted string

pdist (phytree) Calculate pairwise patristic
distances in a phytree object

phytree (phytree) Object constructor for a phylogenetic
tree object

plot (phytree) Draw a phylogenetic tree

prune (phytree) Remove branch nodes from
phylogenetic tree

reroot (phytree) Change the root of a phylogenetic
tree

select (phytree) Select tree branches and leaves in
phytree object

subtree (phytree) Extract a subtree

view (phytree) View phylogenetic tree

weights (phytree) Calculate weights for a phylogenetic
tree

1-23

1 Functions – Categorical List

Graph Visualization Methods
List of methods for the biograph object.

biograph (biograph) Create biograph object

dolayout (biograph) Calculate node positions and edge
trajectories

getancestors (biograph) Find ancestors in a biograph object

getdescendants (biograph) Find descendants in a biograph
object

getedgesbynodeid (biograph) Get handles to edges in graph

getnodesbyid (biograph) Get handles to nodes

getrelatives (biograph) Find relatives in a biograph object

view (biograph) Draw figure from biograph object

1-24

Tutorials, Demos, and Examples

Tutorials, Demos, and Examples
Sequence analysis

• seqstatsdemo — Sequence statistics tutorial example

• aligndemo — Basic sequence alignment tutorial

• alignsigdemo — How to estimate the significance of sequence alignments

• alignscoringdemo — Tutorial showing the use of scoring matrices

Hidden Markov Model profiles

• hmmprofdemo — HMM profile alignment tutorial example

Microarray analysis

• mousedemo — Microarray normalization and visualization example

• yeastdemo — Microarray data analysis example

• biclusterdemo — Clustergram functionality examples

Phylogenetic Analysis

• primatesdemo — Building a phylogenetic tree for the hominidae species

• hivdemo — Analyzing the origin of the HIV with phylogenetic trees

External software interface

• bioperldemo — Calling Bioperl functions from within MATLAB

• biojavademo — Calling BioJava functions from within MATLAB

External web database interface

• biowebservicedemo — How to use a Simple Object Access Protocol (SOAP)
based web service from within MATLAB

1-25

1 Functions – Categorical List

1-26

2

Functions — Alphabetical
List

aa2int

Purpose Convert an amino acid sequence from a letter to an integer
representation

Syntax SeqInt = aa2int(SeqChar)

Arguments
SeqChar Amino acid sequence represented with letters. Enter

a character string with characters from the table
Mapping Amino Acid Letters to Integers (unknown
characters are mapped to 0). Integers are arbitrarily
assigned to IUB/IUPAC letters. You can also enter
a structure with a field Sequence.

SeqInt Amino acid sequence represented with numbers.

Mapping Amino Acid Letters to Integers

Amino Acid Code Amino Acid Code

Alanine A1 Phenylalanine F14

Arginine R2 Proline P15

Asparagine N3 Serine S–16

Aspartic acid (Aspartate) D4 Threonine T–17

Cysteine C5 Tryptophan W18

Glutamine Q6 Tyrosine Y19

Glutamic acid
(Glutamate)

E7 Valine V20

Glycine G8 Aspartic acid or
Asparagine

B21

Histidine H9 Glutamic acid or
glutamine

Z22

Isoleucine I10 Unknown or any
amino acid

X23

2-2

aa2int

Amino Acid Code Amino Acid Code

Leucine L11 Translation stop *24

Lysine K12 Gap of
indeterminate
length

- 25

Methionine M13 Any character or
symbol not in table

?0

Description SeqInt = aa2int(SeqChar)converts a character string of amino acids
(SeqChar) to a 1-by-N array of integers (SeqInt) using the table Mapping
Amino Acid Letter to Integers.

Examples Convert an amino acid sequence of letters to a vector of integers.

SeqInt = aa2int('MATLAB')

SeqInt =
13 1 17 11 1 21

Convert a random amino acid sequence of letters to integers.

SeqChar = randseq(20, 'alphabet', 'amino')

SeqChar =
dwcztecakfuecvifchds

SeqInt = aa2int(SeqChar)

SeqInt =
Columns 1 through 13

4 18 5 22 17 7 5 1 12 14 0 7 5
Columns 14 through 20

20 10 14 5 9 4 16

See Also Bioinformatics Toolbox functions aminolookup, int2aa, int2nt, nt2int

2-3

aa2nt

Purpose Convert amino acid sequence to nucleotide sequence

Syntax SeqNT = aa2nt(SeqAA)
aa2nt(..., 'PropertyName', PropertyValue,...)
aa2nt(..., 'GeneticCode', GeneticCodeValue)
aa2nt(..., 'Alphabet' AlphabetValue)

Arguments
SeqAA Amino acid sequence. Enter a character string

or a vector of integers from the table Mapping
Amino Acid Letters to Integers on page 2-2.
Examples: 'ARN' or [1 2 3]

GeneticCodeValue Property to select a genetic code. Enter a code
number or code name from the table Genetic
Code below. If you use a code name, you can
truncate the name to the first two characters
of the name.

AlphabetValue Property to select a nucleotide alphabet. Enter
either 'DNA' or 'RNA'. The default value is
'DNA', which uses the symbols A, C, T, G. The
value 'RNA' uses the symbols A, C, U, G.

Genetic Code

Code
Number

Code Name Code
Number

Code Name

1 Standard 12 Alternative Yeast
Nuclear

2 Vertebrate
Mitochondrial

13 Ascidian
Mitochondrial

3 Yeast Mitochondrial 14 Flatworm
Mitochondrial

2-4

aa2nt

Code
Number

Code Name Code
Number

Code Name

4 Mold, Protozoan,
Coelenterate
Mitochondrial,
and Mycoplasma
/Spiroplasma

15 Blepharisma
Nuclear

5 Invertebrate
Mitochondrial

16 Chlorophycean
Mitochondrial

6 Ciliate,
Dasycladacean, and
Hexamita Nuclear

21 Trematode
Mitochondrial

9 Echinoderm
Mitochondrial

22 Scenedesmus
Obliquus
Mitochondrial

10 Euplotid Nuclear 23 Thraustochytrium
Mitochondrial

11 Bacterial and Plant
Plastid

Description SeqNT = aa2nt(SeqAA) converts an amino acid sequence (SeqAA) to
a nucleotide sequence (SeqNT) using the standard genetic code. In
general, the mapping from an amino acid to a nucleotide codon is not
a one-to-one mapping. For amino acids with more then one possible
nucleotide codon, this function selects randomly a codon corresponding
to that particular amino acid.

For the ambiguous characters B and Z, one of the amino acids
corresponding to the letter is selected randomly, and then a codon
sequence is selected randomly. For the ambiguous character X, a codon
sequence is selected randomly from all possibilities.

aa2nt(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-5

aa2nt

aa2nt(..., 'GeneticCode', GeneticCodeValue) selects a genetic
code (GeneticCodeValue) to use when converting an amino acid
sequence (SeqAA) to a nucleotide sequence (SeqNT).

aa2nt(..., 'Alphabet' AlphabetValue) selects a nucleotide alphabet
(AlphabetValue).

Standard Genetic Code

Amino Acid Amino Acid

Alanine (A) GCT, GCC, GCA,
GCG

Phenylalanine
(F)

TTT, TTC

Arginine (R) CGT, CGC, CGA,
CGG, AGA, AGG

Proline (P) CCT, CCC,
CCA, CCG

Asparagine
(N)

ATT, AAC Serine (S) TCT, TCC,
TCA,TCG, AGT,
AGC

Aspartic
acid
(Aspartate,
D)

GAT, GAC Threonine (T) ACT, ACC,
ACA, ACG

Cysteine (C) TGT, TGC Tryptophan
(W)

TGG

Glutamine
(Q)

CAA, CAG Tyrosine (Y) TAT, TAC

Glutamic
acid
(Glutamate,
E)

GAA, GAG Valine (V) GTT, GTC,
GTA, GTG

Glycine (G) GGT, GGC, GGA,
GGG

Aspartic acid
or Asparagine

B—random
codon from D
and N

2-6

aa2nt

Amino Acid Amino Acid

Histidine
(H)

CAT, CAC Glutamic acid
or Glutamine

Z—random
codon from E
and Q

Isoleucine
(I)

ATT, ATC, ATA Unknown or
any amino acid

Xrandom codon

Leucine (L) TTA, TTG, CTT,
CTC, CTA, CTG

Translation
stop (*)

TAA, TAG, TGA

Lysine (K) AAA, AAG Gap of
indeterminate
length (-)

Methionine
(M)

ATG Any character
or any symbol
not in table (?)

???

Examples 1 Convert a amino acid sequence to a nucleotide sequence using the
standard genetic code.

aa2nt('MATLAB')

Warning: The sequence contains ambiguous characters.
ans =
ATGGCAACCCTGGCGAAT

2 Use the Vertebrate Mitochondrial genetic code.

aa2nt('MATLAP', 'GeneticCode', 2)

ans =
ATGGCAACTCTAGCGCCT

3 Use the genetic code for the Echinoderm Mitochondrial RNA
alphabet.

2-7

aa2nt

aa2nt('MATLAB','GeneticCode','ec','Alphabet','RNA')

Warning: The sequence contains ambiguous characters.
ans =
AUGGCUACAUUGGCUGAU

4 Convert a sequence with the ambiguous amino acid characters B.

aa2nt('abcd')

Warning: The sequence contains ambiguous characters.
ans =
GCCACATGCGAC

See Also Bioinformatics Toolbox functions geneticcode, nt2aa, revgeneticcode,
seqtool

MATLAB function rand

2-8

aacount

Purpose Count the amino acids in a sequence

Syntax Amino = aacount(SeqAA)
aacount(..., 'PropertyName', PropertyValue,...)
aacount(..., 'Chart', ChartValue)
aacount(..., 'Others', OthersValue)
aacount(..., 'Structure', StructureValue)

Arguments
SeqAA Amino acid sequence. Enter a character string or

vector of integers from the table Mapping Amino
Acid Letters to Integers on page 2-2. Examples:
'ARN' or [1 2 3]. You can also enter a structure
with the field Sequence.

ChartValue Property to select a type of plot. Enter either
'pie' or 'bar'.

OthersValue Property to control the counting of ambiguous
characters individually. Enter either 'full' or
'bundle'. The default value is 'bundle'.

StructureValue Property to control blocking the unknown
characters warning and not counting unknown
characters.

Description Amino = aacount(SeqAA) counts the type and number of amino acids
in an amino acid sequence (SeqAA) and returns the counts in a 1-by-1
structure (Amino) with fields for the standard 20 amino acids (A R N D
C Q E G H I L K M F P S T W Y V).

• If a sequence contains amino acids with ambiguous characters (B, Z,
X), the stop character (*), or gaps indicated with a hyphen (-), the field
Others is added to the structure and a warning message is displayed.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence

2-9

aacount

• If a sequence contains any characters other than the 20 standard
amino acids, ambiguous characters, stop, and gap characters, the
characters are counted in the field Others and a warning message is
displayed.

Warning: Sequence contains unknown characters. These will
be ignored.

• If the property Others = 'full' , this function lists the ambiguous
characters separately, asterisks are counted in a new field (Stop),
and hyphens are counted in a new field, (Gap).

aacount(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

aacount(..., 'Chart', ChartValue) creates a chart showing the
relative proportions of the amino acids.

aacount(..., 'Others', OthersValue), when OthersValue is
'full'', counts the ambiguous amino acid characters individually
instead of adding them together in the field Others.

aacount(..., 'Structure', StructureValue) when StructureValue
is 'full', blocks the unknown characters warning and ignores counting
unknown characters.

• aacount(SeqAA) — Display 20 amino acids, and only if there are
ambiguous and unknown characters, add an Others field with the
counts.

• aacount(SeqAA, 'Others', 'full') — Display 20 amino acids, 3
ambiguous amino acids, stops, gaps, and only if there are unknown
characters, add an Others field with the unknown counts.

• aacount(SeqAA, 'Structure', 'full') — Display 20 amino acids
and always display an Others field. If there are ambiguous and
unknown characters, adds counts to the Others field otherwise
display 0.

2-10

aacount

• aacount(SeqAA, 'Others', 'full', 'Structure', 'full') —
Display 20 amino acids, 3 ambiguous amino acids, stops, gaps, and
Others field. If there are unknown characters, add counts to the
Others field otherwise display 0.

Examples 1 Create a sequence.

Seq = aacount('MATLAB')

2 Count the amino acids in the sequence.

AA = aacount(Seq)

Warning: Symbols other than the standard 20 amino acids appear
in the sequence.
AA =

A: 2
R: 0
N: 0
D: 0
C: 0
Q: 0
E: 0
G: 0
H: 0
I: 0
L: 1
K: 0
M: 1
F: 0
P: 0
S: 0
T: 1
W: 0
Y: 0
V: 0

Others: 1

2-11

aacount

3 Get the count for alanine (A) residues.

AA.A
ans =

2

See Also Bioinformatics Toolbox functions aminolookup, atomiccomp, basecount,
codoncount, dimercount, isoelectric, molweight, proteinplot,
seqtool

2-12

affyread

Purpose Read microarray data from Affymetrix GeneChip file

Syntax AFFYData = affyread(File)
AFFYData = affyread(File, LibraryDir)

Arguments
File Enter a filename, or a path and filename

supported by your computer. Supported file
formats are DAT, EXP, CEL, CHP and, CDF. If the
file cannot be located on the Web, it needs to be
stored locally.

LibraryDir Enter the path and directory where the library
file (CDF) is stored.

Description AFFYData = affyread(File) reads an Affymetrix data file (File) and
creates a MATLAB structure (AFFYDdata).

AFFYData = affyread(File, LibraryDir) specifies the directory
where the library files (CDF) are stored.

Note: The function affyread only works on PC supported platforms.

GeneChip and Affymetrix are registered trademarks of Affymetrix, Inc.

See Also Bioinformatics Toolbox functions gprread, probelibraryinfo,
probesetlink, probesetlookup, probesetplot, probesetvalues,
sptread

2-13

aminolookup

Purpose Display amino acid codes, integers, abbreviations, names, and codons

Syntax aminolookup(SeqAA)
aminolookup(..., 'PropertyName', PropertyValue,...)
aminolookup('Code', CodeValue)
aminolookup('Integer', IntegerValue)
aminolookup('Abbreviation', AbbreviationValue)
aminolookup('Name', NameValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string of single-letter codes or three-letter
abbreviations from the Amino Acid Lookup
Table below.

CodeValue Amino acid single-letter code. Enter a single
character from the Amino Acid Lookup Table
below.

IntegerValue

AbbreviationValue Amino acid three-letter abbreviation. Enter
a three-letter abbreviation from the Amino
Acid Lookup Table below.

NameValue Amino acid name. Enter an amino acid name
from the Amino Acid Lookup Table below.

Amino Acid Lookup Table

Code Integer Abbreviation Name Codons

A 1 Ala Alanine GCU GCC GCA
GCG

R 2 Arg Arginine CGU CGC CGA
CGG AGA AGG

2-14

aminolookup

Code Integer Abbreviation Name Codons

N 3 Asn Asparagine AAU AAC

D 4 Asp Aspartic acid
(Aspartate)

GAU GAC

C 5 Cys Cysteine UGU UGC

Q 6 Gln Glutamine CAA CAG

E 7 Glu Glutamic acid
(Glutamate)

GAA GAG

G 8 Gly Glycine GGU GGC GGA
GGG

H 9 His Histidine CAU CAC

I 10 Ile Isoleucine AUU AUC AUA

L 11 Leu Leucine UUA UUG CUU
CUC CUA CUG

K 12 Lys Lysine AAA AAG

M 13 Met Methionine AUG

F 14 Phe Phenylalanine UUU UUC

P 15 Pro Proline CCU CCC CCA
CCG

S 16 Ser Serine UCU UCC UCA
UCG AGU AGC

T 17 Thr Threonine ACU ACC ACA
ACG

W 18 Trp Tryptophan UGG

Y 19 Tyr Tyrosine UAU UAC

V 20 Val Valine GUU GUC GUA
GUG

2-15

aminolookup

Code Integer Abbreviation Name Codons

B 21 Asx Aspartic acid or
Asparagine

AAU AAC GAU
GAC

Z 22 Glx Glutamic acid
or Glutamine

CAA CAG GAA
GAG

X 23 Xaa Any amino acid All codons

* 24 END Termination
(translation
stop)

UAA UAG UGA

- 25 GAP Gap of unknown
length

- - -

? 0 ??? Unknown
amino acid

Description aminolookup displays a table of amino acid codes, integers,
abbreviations, names, and codons.

aminolookup(SeqAA) converts between amino acid three-letter
abbreviations and one-letter codes. If the input is a character string of
three-letter abbreviations, then the output is a character string with
the corresponding one-letter codes. If the input is a character string of
single-letter codes, then the output is a character string of three-letter
codes.

If you enter one of the ambiguous characters B, Z, X, this function
displays the abbreviation for the ambiguous amino acid character.

aminolookup('abc')

ans=
AlaAsxCys

aminolookup(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

2-16

aminolookup

aminolookup('Code', CodeValue) displays the corresponding amino
acid three-letter abbreviation and name.

aminolookup('Integer', IntegerValue) displays the corresponding
amino acid single-letter code and name.

aminolookup('Abbreviation', AbbreviationValue) displays the
corresponding amino acid single-letter code and name.

aminolookup('Name', NameValue) displays the corresponding
single-letter amino acid code and three-letter abbreviation.

Examples 1 Display the single-letter code and three-letter abbreviation for
proline.

aminolookup('Name','proline')

ans =
P Pro

2 Convert a single-letter amino acid sequence to a three-letter
sequence.

aminolookup('MWKQAEDIRDIYDF')

ans =
MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe

3 Convert a three-letter amino acid sequence to a single-letter
sequence.

aminolookup('MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe')

ans =
MWKQAEDIRDIYDF

4 Display the single-letter code, three-letter abbreviation, and name
for an integer.

2-17

aminolookup

aminolookup('integer', 1)

ans =
A Ala Alanine

See Also Bioinformatics Toolbox functions aa2int, aacount, geneticcode,
int2aa, nt2aa, revgeneticcode

2-18

atomiccomp

Purpose Calculate atomic composition of a protein

Syntax Atoms = atomiccomp(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string or vector

of integers from the table Mapping Amino Acid Letters to
Integers on page 2-2. You can also enter a structure with
the field Sequence.

Description Atoms = atomiccomp(SeqAA) counts the type and number of atoms
in an amino acid sequence (SeqAA) and returns the counts in a 1-by-1
structure (Atoms) with fields C, H, N, O, and S.

Examples Get an amino acid sequence from the Protein Sequence Database
(PIR-PSD) and count the atoms in the sequence.

pirdata = getpir('cchu','SequenceOnly',true);
mwcchu = atomiccomp(pirdata)

mwcchu =
C: 526
H: 845
N: 143
O: 149
S: 6

mwcchu.C

ans=
526

See Also Bioinformatics Toolbox functions aacount, molweight, proteinplot

2-19

basecount

Purpose Count nucleotides in a sequence

Syntax Bases = basecount(SeqNT)
basecount(..., 'PropertyName', PropertyValue,...)
basecount(..., 'Chart', ChartValue)
basecount(..., 'Others', OthersValue)
basecount(..., 'Structure', StructureValue)

Arguments
SeqNT Nucleotide sequence. Enter a character string

with the letters A, T, U, C, and G. The count for
U characters is included with the count for T
characters. . You can also enter a structure with
the field Sequence.

ChartValue Property to select a type of plot. Enter either 'pie'
or 'bar'.

OthersValue Property to control counting ambiguous characters
individually. Enter either full' or 'bundle'.
Default is 'bundle'.

Description Bases = basecount(SeqNT) counts the number of bases in a nucleotide
sequence (SeqNT) and returns the base counts in a 1-by-1 structure
(Bases) with the fields A, C, G, T.

• For sequences with the character U, the number of U characters is
added to the number of T characters.

• If the sequence contains ambiguous nucleotide characters (R, Y, K, M,
S, W, B, D, H, V, N), or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

2-20

basecount

• If the sequence contains undefined nucleotide characters (E F H I J
L O P Q X Z) , the characters are counted in the field Others and a
warning message is displayed.

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

• If Others = 'full'', ambiguous characters are listed separately
and hyphens are counted in a new field (Gaps).

basecount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

basecount(..., 'Chart', ChartValue) creates a chart showing the
relative proportions of the nucleotides.

basecount(..., 'Others', OthersValue), when OthersValue is
'full', counts all the ambiguous nucleotide symbols individually
instead of bundling them together into the Others field of the output
structure.

basecount(..., 'Structure', StructureValue) when
StructureValue is 'full' , blocks the unknown characters warning
and ignores counting unknown characters.

• basecount(SeqNT) — Display 4 nucleotides, and only if there are
ambiguous and unknown characters, add an Others field with the
counts.

• basecount(SeqNT, 'Others', 'full') — Display 4 nucleotides,
11 ambiguous nucleotides, gaps, and only if there are unknown
characters, add an Others field with the unknown counts.

• basecount(SeqNT, 'Structure', 'full') — Display 4 nucleotides
and always display an Others field. If there are ambiguous and
unknown characters, adds counts to the Others field otherwise
display 0.

2-21

basecount

• basecount(SeqNT, 'Others', 'full', 'Structure', 'full') —
Display 4 nucleotides, 11 ambiguous nucleotides, gaps, and Others
field. If there are unknown characters, add counts to the Others
field otherwise display 0.

Examples 1 Count the number of bases in a DNA sequence.

Bases = basecount('TAGCTGGCCAAGCGAGCTTG')

Bases =
A: 4
C: 5
G: 7
T: 4

2 Get the count for adenosine (A) bases.

Bases.A

ans =
4

3 Count the bases in a DNA sequence with ambiguous characters.

basecount('ABCDGGCCAAGCGAGCTTG','Others','full')

ans =
A: 4
C: 5
G: 6
T: 2
R: 0
Y: 0
K: 0
M: 0
S: 0
W: 0
B: 1

2-22

basecount

D: 1
H: 0
V: 0
N: 0

Gaps: 0

See Also Bioinformatics Toolbox functions aacount, baselookup, codoncount,
cpgisland, dimercount, nmercount, ntdensity, seqtool

2-23

baselookup

Purpose Display nucleotide codes, integers, names, and abbreviations

Syntax baselookup(..., 'PropertyName', PropertyValue,...)
baselookup('Complement', SeqNT)
baselookup('Code', CodeValue)
baselookup('Integer', IntegerValue)
baselookup('Name', NameValue)

Arguments
SeqNT Nucleotide sequence. Enter a character string of

single-letter codes from the Nucleotide Lookup
Table below.

In addition to a single nucleotide sequence,
SeqNT can be a cell array of sequences,
or a two-dimensional character array of
sequences. The complement for each sequence
is determined independently

CodeValue Nucleotide letter code. Enter a single character
from the Nucleotide Lookup Table below. Code
can also be a cell array or a two-dimensional
character array.

IntegerValue Nucleotide integer. Enter an integer from the
Nucleotide Lookup Table below. Integers are
arbitrarily assigned to IUB/IUPAC letters.

NameValue Nucleotide name. Enter a nucleotide name from
the Nucleotide Lookup Table below. NameValue
can also be a single name, a cell array, or a
two-dimensional character array.

2-24

baselookup

Nucleotide Lookup Table

Code Integer Base Name Meaning Complement

A 1 Adenine A T

C 2 Cytosine C G

G 3 Guanine G C

T 4 Thymine T A

U 4 Uracil U A

R 5 (PuRine) G|A Y

Y 6 (PYrimidine) T|C R

K 7 (Keto) G|T M

M 8 (AMino) A|C K

S 9 Strong interaction (3
H bonds)

G|C S

W 10 Weak interaction (2 H
bonds)

A|T W

B 11 Not-A (B follows A) G|T|C V

D 12 Not-C (D follows C) G|A|T H

H 13 Not-G (H follows G) A|T|C D

V 14 Not-T (or U) (V follows
U)

G|A|C B

N,X 15 ANy nucleotide G|A|T|C N

- 16 Gap of indeterminate
length

Gap -

Description baselookup(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

2-25

baselookup

baselookup('Complement', SeqNT) displays the complementary
nucleotide sequence.

baselookup('Code', CodeValue) displays the corresponding letter
code, meaning, and name. For ambiguous nucleotide letters (R Y K M S
W B D H V N X), the name is replace by a descriptive name.

baselookup('Integer', IntegerValue) displays the corresponding
letter code, meaning, and nucleotide name.

baselookup('Name', NameValue) displays the corresponding letter
code and meaning.

Examples baselookup('Complement', 'TAGCTGRCCAAGGCCAAGCGAGCTTN')

baselookup('Name','cytosine')

See Also Bioinformatics Toolbox functions basecount, codoncount , dimercount ,
geneiccode, nt2aa , nt2int , revgeneticode, seqtool

2-26

biograph (biograph)

Purpose Create biograph object

Syntax BGobj = biograph(CMatrix)
BGobj = biograph(CMatrix, NodeIDs)

Arguments
CMatrix Connection matrix. Enter a square matrix that is

full or sparse. For a square matrix the number of
rows is equal to the number of nodes. A value of 1
indicates a connection to a node while a 0 indicates
no connection.

NodeIds Node identification strings. Enter a cell array of
strings with the same number of strings as the
number of rows/columns in the connection matrix
(CMatrix). Default values are the row/column
numbers.

Description BGobj = biograph(CMatrix) creates a graph object (BGobj) using a
connection matrix (CMatrix). All nondiagonal and positive entries in the
connection matrix (CMatrix) indicate connected nodes, rows represent
the source nodes, and columns represent the sink nodes.

A biograph (BGobj) has two properties (Nodes, Edges) that have their
own properties.

BGobj = biograph(CMatrix, NodeIDs) specifies the node identification
strings (NodeIDs).

Access properties of a biograph object with BGobj.propertyname,
BGobj.propertyname.propertyname, or with the get and set commands.

2-27

biograph (biograph)

Properties for the Object Biograph

Biograph
Property

Description

ID Enter a character string.

Label Enter a character string.

Description Description of the graph. Enter text.

LayoutType Algorithm for the layout engine. Enter
'hierarchical'(default), 'equilibrium',
'radial'.

EdgeType Enter 'straight', 'curved'(default),
'segmented'. Curved or segmented edges
occur only when necessary to avoid obstruction
by nodes. Graphs with LayoutType equal to
'equilibrium' or 'Radial’ cannot produce
curved or segmented edges.

Scale Property to post-scale the node coordinates.
Enter a positive number.

LayoutScale Property to scale the size of the nodes before
calling the layout engine. Enter a positive
number.

ShowArrows Property to control showing arrows with the
edges. Enter either 'on' (default) or 'off’.

NodeAutoSize Property to control precalculating the node size
before calling the layout engine. Enter either
'on' or 'off'.

NodeCallback User callback for all nodes. Enter the name
of a function or a function handle. Default is
'display'.

2-28

biograph (biograph)

Biograph
Property

Description

EdgeCallback User callback for all edges. Enter the name
of a function or function handle. Default is
'display'.

Nodes Column vector with handles to nodes. Size of
vector is NumberOfNodes x 1. For properties of
the Nodes property, see the table below.

Edges Column vector with handles to edges.
Size of vector is NumberOfEdges x 1.
For properties of the Edges property, see the
table below.

Properties of the Nodes Property

ID Character string defined when the biograph
object is created. Node IDs must be unique.
Read-only.

Label User defined label for a node on a graph. Enter
a character string. The default value is the ID
property.

Description Description of the node. Enter text.

Position Two element numeric vector of x and y
coordinates computed by the layout engine. The
default is []. For example, [150 150].

Shape Enter 'box'(default), 'ellipse', 'circle',
'rect', 'rectangle', 'diamond', 'trapezium',
'house', 'invtrapezium', 'inverse',
'parallelogram'.

2-29

biograph (biograph)

Size Two element numeric vector calculated before
calling the layout engine using the actual font
size and shape of the node. The default value
is [10 10].

Color RGB three element numeric vector. Default is
[1 1 0.7].

LineWidth Positive number. Default is 1.

LineColor RGB three element numeric vector. Default is
[0.3 0.3 1].

FontSize Positive number. Default is 8 pts.

TextColor RGB three element numeric vector. Default is
[0 0 0].

Properties of the Edge Property

ID Character string defined when the biograph
object is created. Edge IDs must be unique.
Read-only.

Label Label for a node on a graph. Enter a string.

Description Description for a node. Enter a text.

LineWidth Positive number. Default is 1.

LineColor RGB three element numeric vector. Default is
[0.5 0.5 0.5].

Method
Summary biograph (biograph) Create biograph object

dolayout (biograph) Calculate node positions and edge
trajectories

getancestors (biograph) Find ancestors in a biograph
object

2-30

biograph (biograph)

getdescendants (biograph) Find descendants in a biograph
object

getedgesbynodeid (biograph) Get handles to edges in graph

getnodesbyid (biograph) Get handles to nodes

getrelatives (biograph) Find relatives in a biograph object

view (biograph) Draw figure from biograph object

Example 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg1 = biograph(cm)
get(bg1.nodes,'ID')

ans =
'Node 1'
'Node 2'
'Node 3'
'Node 4'
'Node 5'

2 Create a biograph object and assign the node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
ids = {'M30931','L07625','K03454','M27323','M15390'};
bg2 = biograph(cm,ids);
get(bg2.nodes,'ID');

view(bg2);

2-31

biograph (biograph)

In bg1.Node, the properties ID and Label are set to the same
value. However, you can only modify the Label field. Node.ID is used
internally to identify the nodes.

See Also Bioinformatics Toolbox methods for the object biograph, biograph,
dolayout, getancestors, getdescendants, getedgesbynodeid,
getnodesbyid, getrelatives, view

MATLAB functions get, set

2-32

blastncbi

Purpose Generate a remote BLAST request

Syntax blastncbi(Seq, Program, 'PropertyName', PropertyValue...)
RID = blastncbi(Seq, Program)
[RID, RTOE]= blastncbi(Seq, Program)

blastncbi(..., 'Database', DatabaseValue)
blastncbi(..., 'Descriptions', DescriptionsValue)
blastncbi(..., 'Alignments', AlignmentsValue)
blastncbi(..., 'Filter', FilterValue)
blastncbi(..., 'Expect', ExpectValue)
blastncbi(..., 'Word', WordValue)
blastncbi(..., 'Matrix', MatrixValue)
blastncbi(..., 'Gapopen', GapopenValue)
blastncbi(..., 'ExtendGap', ExtendGapValue)
blastncbi(..., 'Inclusion', InclusionValue)
blastncbi(..., 'Pct', PctValue)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

GenBank or RefSeq accession number, GI,
FASTA file, URL, string, character array, or
a MATLAB structure that contains the field
Sequence. You can also enter a structure with
the field Sequence.

Program BLAST program. Enter 'blastn', 'blastp',
'pciblast', 'blastx', 'tblastn', 'tblastx',
or 'megablast'.

2-33

blastncbi

Database Property to select a database. Compatible
databases depend upon the type of sequence
submitted and program selected. The
nonredundant database, 'nr', is the default
value for both nucleotide and amino acid
sequences.

For nucleotide sequences, enter 'nr', 'est',
'est_human', 'est_mouse', 'est_others',
'gss', 'htgs', 'pat', 'pdb', 'month',
'alu_repeats', 'dbsts', 'chromosome', or
'wgs'. The default value is ’nr'.

For amino acid sequences, enter 'nr',
'swissprot', 'pat', 'pdb', or 'month'. The
default value is 'nr'.

Description Property to specify the number of short
descriptions. The default value is normally
100, and for Program = pciblast, the default
value is 500.

Alignment Property to specify the number of sequences to
report high-scoring segment pairs (HSP). The
default value is normally 100, and for Program
= pciblast, the default value is 500.

Filter Property to select a filter. Enter 'L'
(low-complexity), 'R' (human repeats), 'm'
(mask for lookup table), or 'lcase' (to turn on
the lowercase mask). The default value is 'L'.

Expect Property to select the statistical significance
threshold. Enter a real number. The default
value is 10.

Word Property to select a word length. For amino
acid sequences, Word can be 2 or 3 (3 is the
default value), and for nucleotide sequences,
Word can be 7, 11, or 15 (11 is the default
value). If Program = 'MegaBlast', Word can
be 11, 12, 16, 20, 24, 28, 32, 48, or 64, with a
default value of 28

2-34

blastncbi

Matrix Property to select a substitution matrix for
amino acid sequences. Enter 'PAM30’, 'PAM70',
'BLOSUM80', 'BLOSUM62', or 'BLOSUM45’. The
default value is 'BLOSUM62'.

Inclusion Property for PCI-BLAST searches to define the
statistical significance threshold. The default
value is 0.005.

Pct Property to select the percent identity. Enter
None, 99, 98, 95, 90, 85, 80, 75, or 60. Match and
mismatch scores are automatically selected.
The default value is 99 (99, 1, -3)

Description The Basic Local Alignment Search Tool (BLAST) offers a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.

blastncbi(Seq, Program) sends a BLAST request against a sequence
(Seq) to NCBI using a specified program (Program).

• With no output arguments, blastncbi returns a command window
link to the actual NCBI report.

• A call with one output argument returns the Report ID (RID).

• A call with two output arguments returns both the RID and the
Request Time Of Execution (RTOE, an estimate of the time until
completion).

blastncbi uses the NCBI default values for the optional arguments:
'nr' for the database, 'L' for the filter, and '10' for the expectation
threshold. The default values for the remaining optional arguments
depend on which program is used. For help in selecting an appropriate
BLAST program, visit

http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml

Information for all of the optional parameters can be found at

2-35

blastncbi

http://www.ncbi.nlm.nih.gov/blast/html/blastcgihelp.html

blastncbi(..., 'Database', DatabaseValue) selects a database for
the alignment search.

blastncbi(..., 'Descriptions', DescriptionsValue), when the
function is called without output arguments, specifies the numbers of
short descriptions returned to the quantity specified.

blastncbi(..., 'Alignments', AlignmentsValue), when the
function is called without output arguments, specifies the number of
sequences for which high-scoring segment pairs (HSPs) are reported.

blastncbi(..., 'Filter', FilterValue) selects the filter to applied
to the query sequence.

blastncbi(... , 'Expect', ExpectValue) provides a statistical
significance threshold for matches against database sequences. You can
learn more about the statistics of local sequence comparison at

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html#head2

blastncbi(..., 'Word', WordValue) selects a word size for amino
acid sequences.

blastncbi(..., 'Matrix', MatrixValue) selects the substitution
matrix for amino acid sequences only. This matrix assigns the score for
a possible alignment of two amino acid residues.

blastncbi(..., 'GapOpen', GapOpenValue) selects a gap penalty for
amino acid sequences. Allowable values for a gap penalty vary with
the selected substitution matrix. For information about allowed gap
penalties for matrixes other then the BLOSUM62 matrix, see

http://www.ncbi.nlm.nih.gov/blast/html/blastcgihelp.html

blastncbi(... , 'ExtendGap', ExtendGapValue) defines the
penalty for extending a gap greater than one space.

blastncbi(..., 'Inclusion', InclusionValue) for PSI-BLAST
only, defines the statistical significance threshold (InclusionValue)

2-36

blastncbi

for including a sequence in the Position Specific Score Matrix (PSSm)
created by PSI-BLAST for the subsequent iteration. The default value
is 0.005.

blastncbi(..., 'Pct', PctValue), when ProgramValue is
'Megablast', selects the percent identity and the corresponding match
and mismatch score for matching existing sequences in a public
database.

Examples % Get a sequence from the Protein Data Bank and create
% a MATLAB structure
S = getpdb('1CIV')

% Use the structure as input for a BLAST search with an
% expectation of 1e-10.
blastncbi(S,'blastp','expect',1e-10)

% Click the URL link (Link to NCBI BLAST Request) to go
% directly to the NCBI request.

% You can also try a search directly with an accession
% number and an alternative scoring matrix.
RID = blastncbi('AAA59174','blastp','matrix','PAM70,'...

'expect',1e-10)

% The results based on the RID are at
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi

% or pass the RID to BLASTREAD to parse the report and
% load it into a MATLAB structure.
blastread(RID)

See Also Bioinformatics Toolbox function blastread, getblast

2-37

blastread

Purpose Read data from NCBI BLAST report file

Syntax Data = blastread(File)

Arguments
File NCBI BLAST formatted report file. Enter a filename,

a path and filename, or a URL pointing to a file. File
can also be a MATLAB character array that contains
the text for a NCBI BLAST report.

Description BLAST (Basic Local Alignment Search Tool) reports offer a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.
BLAST reports can be lengthy, and parsing the data from the various
formats can be cumbersome.

Data = blastread(File) reads a BLAST report from an NCBI
formatted file (File) and returns a data structure (Data) containing
fields corresponding to the BLAST keywords. blastread parses the
basic BLAST reports BLASTN, BLASTP, BLASTX, TBLASTN, and TBLASTX.

Data contains the following fields:

RID
Algorithm
Query
Database
Hits.Name
Hits.Length
Hits.HSP.Score
Hits.HSP.Expect
Hits.HSP.Identities
Hits.HSP.Positives (peptide sequences)
Hits.HSP.Gaps
Hits.HSP.Frame (translated searches)
Hits.HSP.Strand (nucleotide sequences)
Hits.HSP.Alignment (3xn: Query- R1, Alignment- R2, Subject-R3)

2-38

blastread

Hits.HSPs.QueryIndices
Hits.HSPs.SubjectIndices
Statistics

References For more information about reading and interpreting BLAST reports,
see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

Examples 1 Create a BLAST request with a GenPept accession number.

RID = blastncbi('AAA59174', 'blastp', 'expect', 1e-10)

2 pass the RID to getblast to download the report and save % it to
a text file.

getblast(RID, 'ToFile' ,'AAA59174_BLAST.rpt')

3 Using the saved file, read the results into a MATLAB structure.

results = blastread('AAA59174_BLAST.rpt')

See Also Bioinformatics Toolbox functions blastncbi, getblast

2-39

blosum

Purpose Return a BLOSUM scoring matrix

Syntax Matrix = blosum(Identity,
'PropertyName', PropertyValue...)

[Matrix, Matrixinfo] = blosum(N)

blosum(..., 'Extended', ExtendedValue)
blosum(..., 'Order', OrderValue)

Arguments
Identity Percent identity level. Enter values from 30

to 90 in increments of 5, enter 62, or enter 100.

Extended Property to control the listing of extended
amino acid codes. Enter either true or false.

The default value is true.

Order Property to specify the order amino acids are
listed in the matrix. Enter a character string of
legal amino acid characters. The length is 20
or 24 characters.

Description Matrix = blosum(Identity, 'PropertyName', PropertyValue...)
returns a BLOSUM (Blocks Substitution Matrix) matrix with a
specified percent identity. The default ordering of the output includes
the extended characters B, Z, X, and *.

A R N D C Q E G H I L K M F P S T W Y V B Z X *

blosum(..., 'Extended', ExtendedValue) if Extended is false, this
function returns the scoring matrix for the standard 20 amino acids.
Ordering of the output when Extended is false is

A R N D C Q E G H I L K M F P S T W Y V

2-40

blosum

blosum(..., 'Order', OrderValue) returns a BLOSUM matrix
ordered by an amino acid sequence (OrderString).

[B, MatrixInfo] = blosum(Identity) returns a structure of
information about a BLOSUM matrix with the fields Name, Scale,
Entropy, ExpectedScore, HighestScore, LowestScore, and Order.

Examples Return a BLOSUM matrix with a value of 50.

B50 = blosum(50)

Return a BLOSUM matrix with the amino acids in a specific order.

B75 = blosum(75,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions blosum62, dayhoff, gonnet, nwalign,
pam, swalign

2-41

classperf

Purpose Evaluated the performance of a classifier

Syntax classperf
cp = classperf(groundtruth)
classperf(cp, classout)
classperf(cp, classout, testidx)
cp = classperf(groundtruth, classout,...)
cp = classperf(...,'positive', p, 'negative', n)

Description classperf provides an interface to keep track of the performance
during the validation of classifiers. classperf creates and updates
a classifier performance (CP) object that accumulates the results of
the classifier. Later, classification standard performance parameters
can be accessed using the function get or as fields in structures.
Some of these performance parameters are ErrorRate, CorrectRate,
ErrorDistributionByClass, Sensitivity and Specificity. classperf,
without input arguments, displays all the available performance
parameters.

cp = classperf(groundtruth) creates and initializes an empty object,
CP is the handle to the object. groundtruth is a vector containing the
true class labels for every observation. groundtruth can be a numeric
vector or a cell array of strings. When used in a cross-validation design
experiment, groundtruth should have the same size as the total number
of observations.

classperf(cp, classout) updates the CP object with the classifier
output classout. classout is the same size and type as groundtruth.
When classout is numeric and groundtruth is a cell array of strings,
the function grp2idx is used to create the index vector that links
classout to the class labels. When classout is a cell array of strings,
an empty string, '', represents an inconclusive result of the classifier.
For numeric arrays, NaN represents an inconclusive result.

classperf(cp, classout, testidx) updates the CP object with
the classifier output classout. classout has smaller size than
groundtruth, and testidx is an index vector or a logical index vector of

2-42

classperf

the same size as groundtruth, which indicates the observations that
were used in the current validation.

cp = classperf(groundtruth, classout,...) creates and updates
the CP object with the first validation. This form is useful when you
want to know the performance of a single validation.

cp = classperf(...,'positive', p, 'negative', n) sets the
'positive' and 'negative' labels to identify the target disorder and
the control classes. These labels are used to compute clinical diagnostic
test performance. p and n must consist of disjoint sets of the labels used
in groundtruth. For example, if

groundtruth = [1 2 2 1 3 4 4 1 3 3 3 2]

you could set

p = [1 2];
n = [3 4];

If groundtruth is a cell array of strings, p and n can either be cell
arrays of strings or numeric vectors whose entries are subsets of
grp2idx(groundtruth). p defaults to the first class returned by
grp2idx(groundtruth), while n defaults to all the others. In clinical
tests, inconclusive values ('' or NaN) are counted as false negatives
for the computation of the specificity and as false positives for the
computation of the sensitivity, that is, inconclusive results may decrease
the diagnostic value of the test. Tested observations for which true
class is not within the union of p and n are not considered. However,
tested observations that result in a class not covered by the vector
groundtruth are counted as inconclusive.

Examples % Classify the fisheriris data with a K-Nearest Neighbor classifier
load fisheriris
c = knnclassify(meas,meas,species,4,'euclidean','Consensus');
cp = classperf(species,c)
get(cp)

% 10-fold cross-validation on the fisheriris data using linear

2-43

classperf

% discriminant analysis and the third column as only feature for
% classification
load fisheriris
indices = crossvalind('Kfold',species,10);
cp = classperf(species); % initializes the CP object
for i = 1:10

test = (indices == i); train = ~test;
class = classify(meas(test,3),meas(train,3),species(train));
% updates the CP object with the current classification results
classperf(cp,class,test)

end
cp.CorrectRate % queries for the correct classification rate

cp =

biolearning.classperformance

Label: ''
Description: ''
ClassLabels: {3x1 cell}
GroundTruth: [150x1 double]

NumberOfObservations: 150
ControlClasses: [2x1 double]
TargetClasses: 1

ValidationCounter: 1
SampleDistribution: [150x1 double]
ErrorDistribution: [150x1 double]

SampleDistributionByClass: [3x1 double]
ErrorDistributionByClass: [3x1 double]

CountingMatrix: [4x3 double]
CorrectRate: 1

ErrorRate: 0
InconclusiveRate: 0.0733

ClassifiedRate: 0.9267
Sensitivity: 1
Specificity: 0.8900

2-44

classperf

PositivePredictiveValue: 0.8197
NegativePredictiveValue: 1

PositiveLikelihood: 9.0909
NegativeLikelihood: 0

Prevalence: 0.3333
DiagnosticTable: [2x2 double]

ans =

0.9467

See Also Bioinformatics Toolbox functions knnclassify,
svmclassifycrossvalind

Statistical Toolbox functions grp2idx, classify

2-45

cleave

Purpose Cleave amino acid sequence with enzyme

Syntax Fragments = cleave(SeqAA, PeptidePattern, Position)
[Fragments, CuttingSites] = cleave(...)
[Fragments, CuttingSites, Lengths] = cleave(...)
cleave(..., 'PropertyName', PropertyValue,...)
cleave(..., 'PartialDigest', PartialDigestValue)

Arguments
SeqAA Amino acid sequence. Enter a character string

or a vector of integers from the table Mapping
Amino Acid Letters to Integers on page 2-2.

Examples: 'ARN' or [1 2 3]. You can also enter
a structure with the field Sequence.

PeptidePattern Short amino acid sequence to search in a larger
sequence. Enter a character string, vector of
integers, or a regular expression.

Position Position on the PeptidePattern where the
sequence is cleaved. Enter a position within the
PeptidePattern. Position 0 corresponds to the
N terminal end of the PepetidePattern.

PartialDigestValueProperty to set the probability that a cleavage
site will be cleaved. Enter a value from 0 to 1.
The default value is 1.

Description Fragments = cleave(SeqAA, PeptidePattern, Position) cuts an
amino acid sequence (SeqAA) into parts at the specified cleavage site
specified by a peptide pattern and position.

[Fragments, CuttingSites] = cleave(...) returns a numeric vector
with the indices representing the cleave sites. A 0 (zero) is added to
the list, so numel(Fragments)==numel(CuttingSites). You can use
CuttingSites+1 to point to the first amino acid of every fragment
respective to the original sequence.

2-46

cleave

[Fragments, CuttingSites, Lengths] = cleave(...) returns a
numeric vector with the lengths of every fragment.

cleave(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

cleave(..., 'PartialDigest', PartialDigestValue) simulates a
partial digestion where PartialDigest is the probability of a cleavage
site being cut.

The following table lists some common proteases and their cleavage
sites.

Protease Peptide Pattern Position

Trypsin [KR](?!P) 1

Chymotrypsin [WYF](?!P) 1

Glutamine C [ED](?!P) 1

Lysine C [K](?!P) 1

Aspartic acid N D 1

Example 1 Get a protein sequence from the GenPept database.

S = getgenpept('AAA59174')

2 Cleave the sequence using trypsin. Trypsin cleaves after K or R when
the next residue is not P.

[parts, sites, lengths] = cleave(S.Sequence,'[KR](?!P)',1);
for i=1:10

fprintf('%5d%5d %s\n',sites(i),lengths(i),parts{i})
end

0 6 MGTGGR
6 1 R
7 34 GAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIR

41 5 NNLTR

2-47

cleave

46 21 LHELENCSVIEGHLQILLMFK
67 7 TRPEDFR
74 6 DLSFPK
80 12 LIMITDYLLLFR
92 8 VYGLESLK

100 10 DLFPNLTVIR

See Also Bioinformatics Toolbox functions , rebasecuts, seqshowwords

MATLAB function regexp

2-48

clustergram

Purpose Create dendrogram and heat map

Syntax clustergram(Data)
clustergram(..., 'PropertyName', PropertyValue,...)
clustergram(..., 'RowLabels', RowLabelsValue)
clustergram(..., 'ColumnLabels', ColumnLabelsValue)
clustergram(..., 'Pdist', PdistValue)
clustergram(..., 'Linkage', LinkageValue)
clustergram(..., 'Dendrogram', DendrogramValue)
clustergram(..., 'ColorMap', ColorMapValue)
clustergram(..., 'SymmetricRange', SymmetricRangeValue)
clustergram(..., 'Dimension', DimensionValue)
clustergram(..., 'Ratio', RatioValue)

Arguments
Data Matrix where each row corresponds to a

gene. Each column is the result from one
experiment.

RowLabelsValue Property to label the rows in Data.ColLabels
Enter a cell array of text strings.

ColumnLabelsValue Property to label the columns in Data. For
example, you can enter the names of the
genes. Enter a cell array of text strings.

PdistValue Property to select the distance metric and
pass arguments to the function pdist. The
default distance metric for a clustergram
is 'correlation'.

LinkageValue Property to select the linkage method and
pass arguments to the function linkage.
The default linkage method is 'average'

DendrogramValue Property to pass arguments to the function
dendrogram.

2-49

clustergram

ColorMapValue Property to select a colormap. Enter the
name or function handle of a function that
returns a colormap, or an M-by-3 array
containing RGB values. The default value
is REDGREENCMAP.

SymmetricRangValue Property to force the color range to be
symmetric around zero. Enter either true
or false. The default value is true.

DimensionValue Property to select either a one-dimensional
or two-dimensional clustergram. Enter
either 1 or 2. The default value is 1.

RatioValue Property to specify the ratio of the space
that the dendrogram(s) uses.

Description clustergram(Data) creates a dendrogram and heat map from gene
expression data (Data) using hierarchical clustering with correlation
as the distance metric and using average linkage to generate the
hierarchical tree. The clustering is performed on the rows of data
(Data). The rows of are typically genes and the columns are the results
from different microarrays. To cluster the columns instead of the rows,
transpose the data using the transpose (') operator.

clustergram(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

clustergram(..., 'RowLabels', RowLabelsValue) uses the contents
of a cell array (RowLabelsValue) as labels for the rows in Data.

clustergram(..., 'ColumnLabels', ColumnLabelsValue) uses the
contents of a cell array (ColumnLabelsValue) as labels for the columns
in Data.

clustergram(..., 'Pdist', PdistValue) sets the distance metric
the function pdist uses to calculate the pairwise distances between
observations. If the distance metric requires extra arguments, then
pass the arguments as a cell array. For example, to use the Minkowski

2-50

clustergram

distance with exponent P you the help for the Statistical Toolbox
function pdist.

clustergram(..., 'Linkage', LinkageValue) selects the linkage
method the function linkage uses to create the hierarchical cluster
tree. For more information about the available options, see the help for
the Statistical Toolbox function linkage.

clustergram(..., 'Dendrogram', DendrogramValue) passes
arguments the function dendrogram uses to create a dendrogram.
Dendrogram should be a cell array of parameter name/value pairs that
can be passed to dendrogram. For more information about the available
options, see the help for the Statistical Toolbox function dendrogram.

clustergram(..., 'ColorMap', ColorMapValue) specifies the
colormap for the figure containing the clustergram. This controls the
colors used to display the heat map.

clustergram(..., 'SymmetricRange', SymmetricRangeValue), when
SymmetricRange is false, disables the default behavior of forcing the
color scale of the heat map to be symmetric about zero.

clustergram(..., 'Dimension', DimensionValue) specifies whether
to create a one-dimensional or two-dimensional clustergram. The
one-dimensional clustergram clusters the rows of the data. The
two-dimensional clustergram creates the one-dimensional clustergram,
and then clusters the columns of the row-clustered data.

clustergram(..., 'Ratio', RatioValue) specifies the ratio of the
space that the dendrogram(s) uses, relative to the size of the heat map,
in the X and Y directions. If Ratio is a single scalar value, it is used as
the ratio for both directions. If Ratio is a two-element vector, the first
element is used for the X ratio, and the second element is used for the
Y ratio. The Y ratio is ignored for one-dimensional clustergrams. The
default ratio is 1/5.

Hold the mouse button down over the image to see the exact values
at a particular point.

2-51

clustergram

Example 1 Load filtered yeast data.

clustergram(yeastvalues);

2 Add labels.

clustergram(yeastvalues,'ROWLABELS',genes,'COLUMNLABELS',times);

3 Change the clustering parameters.

clustergram(yeastvalues,'PDIST','euclidean','LINKAGE','complete');

4 Change the dendrogram color parameter.

clustergram(yeastvalues,'ROWLABELS',genes,'DENDROGRAM',{'color',5});

See Also Statistics Toolbox functions cluster, dendrogram, linkage, pdist

2-52

clustergram

Purpose Create dendrogram and heat map

Syntax clustergram(Data)
clustergram(..., 'PropertyName', PropertyValue,...)
clustergram(..., 'RowLabels', RowLabelsValue)
clustergram(..., 'ColumnLabels', ColumnLabelsValue)
clustergram(..., 'Pdist', PdistValue)
clustergram(..., 'Linkage', LinkageValue)
clustergram(..., 'Dendrogram', DendrogramValue)
clustergram(..., 'ColorMap', ColorMapValue)
clustergram(..., 'SymmetricRange', SymmetricRangeValue)
clustergram(..., 'Dimension', DimensionValue)
clustergram(..., 'Ratio', RatioValue)

Arguments
Data Matrix where each row corresponds to a

gene. Each column is the result from one
experiment.

RowLabelsValue Property to label the rows in Data.ColLabels
Enter a cell array of text strings.

ColumnLabelsValue Property to label the columns in Data. For
example, you can enter the names of the
genes. Enter a cell array of text strings.

PdistValue Property to select the distance metric and
pass arguments to the function pdist. The
default distance metric for a clustergram
is 'correlation'.

LinkageValue Property to select the linkage method and
pass arguments to the function linkage.
The default linkage method is 'average'

DendrogramValue Property to pass arguments to the function
dendrogram.

2-53

clustergram

ColorMapValue Property to select a colormap. Enter the
name or function handle of a function that
returns a colormap, or an M-by-3 array
containing RGB values. The default value
is REDGREENCMAP.

SymmetricRangValue Property to force the color range to be
symmetric around zero. Enter either true
or false. The default value is true.

DimensionValue Property to select either a one-dimensional
or two-dimensional clustergram. Enter
either 1 or 2. The default value is 1.

RatioValue Property to specify the ratio of the space
that the dendrogram(s) uses.

Description clustergram(Data) creates a dendrogram and heat map from gene
expression data (Data) using hierarchical clustering with correlation
as the distance metric and using average linkage to generate the
hierarchical tree. The clustering is performed on the rows of data
(Data). The rows of are typically genes and the columns are the results
from different microarrays. To cluster the columns instead of the rows,
transpose the data using the transpose (') operator.

clustergram(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

clustergram(..., 'RowLabels', RowLabelsValue) uses the contents
of a cell array (RowLabelsValue) as labels for the rows in Data.

clustergram(..., 'ColumnLabels', ColumnLabelsValue) uses the
contents of a cell array (ColumnLabelsValue) as labels for the columns
in Data.

clustergram(..., 'Pdist', PdistValue) sets the distance metric
the function pdist uses to calculate the pairwise distances between
observations. If the distance metric requires extra arguments, then
pass the arguments as a cell array. For example, to use the Minkowski

2-54

clustergram

distance with exponent P you the help for the Statistical Toolbox
function pdist.

clustergram(..., 'Linkage', LinkageValue) selects the linkage
method the function linkage uses to create the hierarchical cluster
tree. For more information about the available options, see the help for
the Statistical Toolbox function linkage.

clustergram(..., 'Dendrogram', DendrogramValue) passes
arguments the function dendrogram uses to create a dendrogram.
Dendrogram should be a cell array of parameter name/value pairs that
can be passed to dendrogram. For more information about the available
options, see the help for the Statistical Toolbox function dendrogram.

clustergram(..., 'ColorMap', ColorMapValue) specifies the
colormap for the figure containing the clustergram. This controls the
colors used to display the heat map.

clustergram(..., 'SymmetricRange', SymmetricRangeValue), when
SymmetricRange is false, disables the default behavior of forcing the
color scale of the heat map to be symmetric about zero.

clustergram(..., 'Dimension', DimensionValue) specifies whether
to create a one-dimensional or two-dimensional clustergram. The
one-dimensional clustergram clusters the rows of the data. The
two-dimensional clustergram creates the one-dimensional clustergram,
and then clusters the columns of the row-clustered data.

clustergram(..., 'Ratio', RatioValue) specifies the ratio of the
space that the dendrogram(s) uses, relative to the size of the heat map,
in the X and Y directions. If Ratio is a single scalar value, it is used as
the ratio for both directions. If Ratio is a two-element vector, the first
element is used for the X ratio, and the second element is used for the
Y ratio. The Y ratio is ignored for one-dimensional clustergrams. The
default ratio is 1/5.

Hold the mouse button down over the image to see the exact values
at a particular point.

2-55

clustergram

Example 1 Load filtered yeast data.

clustergram(yeastvalues);

2 Add labels.

clustergram(yeastvalues,'ROWLABELS',genes,'COLUMNLABELS',times);

3 Change the clustering parameters.

clustergram(yeastvalues,'PDIST','euclidean','LINKAGE','complete');

4 Change the dendrogram color parameter.

clustergram(yeastvalues,'ROWLABELS',genes,'DENDROGRAM',{'color',5});

See Also Statistics Toolbox functions cluster, dendrogram, linkage, pdist

2-56

codonbias

Purpose Calculate codon frequency for each amino acid in a DNA sequence

Syntax codonbias(SeqDNA)
codonbias(..., 'PropertyName', PropertyValue,...)
codonbias(..., 'GeneticCode', GeneticCodeValue)
codonbias(..., 'Frame', FrameValue)
codonbias(..., 'Reverse', ReverseValue)
codonbias(..., 'Pie', PieValue)

Arguments
SeqDNA Nucleotide sequence (DNA or RNA). Enter a character

string with the letters A, T or U, C, and G or a vector
of integers. You can also enter a structure with the
field Sequence. codonbias does not count ambiguous
bases or gaps.

Description Many amino acids are coded by two or more nucleic acid codons.
However, the probability that a codon (from the various possible codons
for an amino acid) is used to code an amino acid is different between
sequences. Knowing the frequency of each codon in a protein coding
sequence for each amino acid is a useful statistic.

codonbias(SeqDNA) calculates the codon frequency in percent for each
amino acid in a DNA sequence (SeqDNA).

codonbias(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

codonbias(..., 'GeneticCode', GeneticCodeValue) selects an
alternative genetic code (GenetidCodeValue). The default value is
'Standard' or 1. For a list of genetic codes, see Genetic Code on page
2-4.

codonbias(..., 'Frame', FrameValue) selects a reading frame
(FrameValue). FrameValue can be 1, 2, or 3. The default value is 1.

2-57

codonbias

codonbias(..., 'Reverse', ReverseValue), when Reverse is true,
returns the codon frequency for the reverse complement of the DNA
sequence (SeqDNA).

codonbias(..., 'Pie', PieValue), when Pie is true, creates a figure
of 20 pie charts for each amino acid.

Example 1 Import a nucleotide sequence from GenBank to MATLAB. For
example, get the DNA sequence that codes for a human insulin
receptor.

S = getgenbank('M10051');

2 Calculate the codon frequency for each amino acid and plot the
results.

cb = codonbias(S.Sequence,'PIE',true)

cb.Ala
ans =

Codon: {'GCA' "GCC' "GCG' 'GCT'}
Freq: [0.1600 0.3867 0.2533 02000]

MATLAB draws a figure with 20 pie charts for the 20 amino acids.

2-58

codonbias

See Also Bioinformatics Toolbox functions aminolookup, codoncount,
geneticcode, nt2aa

2-59

codoncount

Purpose Count codons in nucleotide sequence

Syntax Codons = codoncount(SeqNT,
'PropertyName', PropertyValue...)

[Codons, CodonArray] = codoncount(SeqNT)

codoncount(..., 'Frame', FrameValue)
codoncount(..., 'Reverse', ReverseValue)
codoncount(..., 'Figure', FigureValue)

Arguments
SeqNT Nucleotide sequence. Enter a character string or

vector of integers. You can also enter a structure with
the field Sequence.

Frame Property to select a reading frame. Enter 1, 2, or 3.
Default value is 1.

Reverse Property to control returning the complement
sequence. Enter true or false. Default value is
false.

Figure Property to control plotting a heat map. Enter either
true or false. Default value is false.

Description Codons = codoncount(SeqNT, 'PropertyName',PropertyValue...)
counts the number of codon in a sequence (SeqNT) and returns the codon
counts in a structure with the fields AAA, AAC, AAG, ..., TTG, TTT.

• For sequences that have codons with the character U, the U characters
are added to codons with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol' appear
in the sequence.
These will be in Others.

2-60

codoncount

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

Warning: Unknown symbols 'symbol' appear
in the sequence.
These will be ignored.

[Codons, CodonArray] = codoncount(SeqNT) returns a 4x4x4 array
(CodonArray) with the raw count data for each codon. The three
dimensions correspond to the three positions in the codon. For example,
the element (2,3,4) of the array gives the number of CGT codons where
A <=> 1, C <=> 2, G <=> 3, and T <=> 4.

codoncount(...,'Frame', FrameValue) counts the codons in a specific
reading frame.

codoncount(..., 'Reverse', ReverseValue), when Reverse is true,
counts the codons for the reverse complement of the sequence.

codoncount(..., 'Figure', FigureValue), when Figure is true
displays a figure showing a heat map of the codon counts.

Examples Count the number of standard codons in a nucleotide sequence.

codons = codoncount('AAACGTTA')

codons =
AAA: 1 ATC: 0 CGG: 0 GCT: 0 TCA: 0
AAC: 0 ATG: 0 CGT: 1 GGA: 0 TCC: 0
AAG: 0 ATT: 0 CTA: 0 GGC: 0 TCG: 0
AAT: 0 CAA: 0 CTC: 0 GGG: 0 TCT: 0
ACA: 0 CAC: 0 CTG: 0 GGT: 0 TGA: 0
ACC: 0 CAG: 0 CTT: 0 GTA: 0 TGC: 0
ACG: 0 CAT: 0 GAA: 0 GTC: 0 TGG: 0
ACT: 0 CCA: 0 GAC: 0 GTG: 0 TGT: 0
AGA: 0 CCC: 0 GAG: 0 GTT: 0 TTA: 0
AGC: 0 CCG: 0 GAT: 0 TAA: 0 TTC: 0

2-61

codoncount

AGG: 0 CCT: 0 GCA: 0 TAC: 0 TTG: 0
AGT: 0 CGA: 0 GCC: 0 TAG: 0 TTT: 0
ATA: 0 CGC: 0 GCG: 0 TAT: 0

Count the codons in the second frame for the reverse complement of
a sequence.

r2codons = codoncount('AAACGTTA', 'Frame',2,...
'Reverse',true);

Create a heat map for the codons in a nucleotide sequence.

a = randseq(1000);
codoncount(a,'Figure', true);

2-62

codoncount

See Also Bioinformatics Toolbox functions aacount , basecount, baselookup,
codonbias, dimercount, nmercount, ntdensity, seqrcomplement,
seqwordcount

2-63

cpgisland

Purpose Locate CpG islands in a DNA sequence

Syntax cpgisland(SeqDNA)
cpgisland(..., 'PropertyName', PropertyValue,...)
cpgisland(..., 'Window', WindowValue)
cpgisland(..., 'MinIsland', MinIslandValue)
cpgisland(..., 'CpGoe', CpGoeValue)
cpgisland(..., 'GCmin', GCminValue)
cpgisland(..., 'Plot', PlotValue)

Arguments
SeqDNA DNA nucleotide sequence. Enter a character

string with the letters A, T, C, and G. You can
also enter a structure with the field Sequence.
cpgisland does not count ambiguous bases or
gaps.

Description cpgisland(SeqDNA) finds CpG islands by marking bases within a
moving window of 100 DNA bases with GC content greater than 50%
and a CpGobserved/CpGexpected ratio greater than 60%.

cpgisland(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

cpgisland(..., 'Window', WindowValue) specifies the window size
for calculating GC percent and CpGobserved/CpGexpected ratios for
a sequence. The default value is 100 bases. A smaller window size
increases the noise in a plot.

cpgisland(..., 'MinIsland', MinIslandValue) specifies the
minimum number of consecutive marked bases to report. The default
value is 200 bases.

cpgisland(..., 'CpGoe', CpGoeValue) specifies the minimum
CpGobserved/CpGexpected ratio in each window needed to mark a base.
Enter a value between 0 and 1. The default value is 0.6. This ratio
is defined as

2-64

cpgisland

CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)

cpgisland(..., 'GCmin', GCminValue) specifies the minimum GC
percent in a window needed to mark a base. Enter a value between 0
and 1. The default value is 0.5.

cpgisland(..., 'Plot', PlotValue), when Plot is true, plots GC
content, CpGoe content, CpG islands greater than the minimum island
size, and all potential CpG islands for the specified criteria.

Example 1 Import a nucleotide sequence from GenBank. For example, get a
sequence from Homo Sapiens chromosome 12.

S = getgenbank('AC156455');

2 Calculate the CpG islands in the sequence and plot the results.

cpgisland(S.Sequence,'PLOT',true)

MATLAB lists the CpG islands greater than 200 bases and draws a
figure.

ans =
Starts: [4470 28753 29347 36229]
Stops: [5555 29064 29676 36450]

2-65

cpgisland

See Also Bioinformatics Toolbox functions basecount, ntdensity, seqshoworfs

2-66

crossvalind

Purpose Generate cross-validation indices

Syntax Indices = crossvalind('Kfold', N, K)
[Train, Test] = crossvalind('HoldOut', N, P)
[Train, Test] = crossvalind('LeaveMOut', N, M)
[Train, Test] = crossvalind('Resubstitution', N, [P,Q])
[...] = crossvalind(Method, Group, ...)
[...] = crossvalind(Method, Group, ..., 'Classes', C)
[...] = crossvalind(Method, Group, ..., 'Min', MinValue)

Description Indices = crossvalind('Kfold', N, K) returns randomly generated
indices for a K-fold cross-validation of N observations. Indices contains
equal (or approximately equal) proportions of the integers 1 through
K that define a partition of the N observations into K disjoint subsets.
Repeated calls return different randomly generated partitions. K
defaults to 5 when omitted. In K-fold cross-validation, K-1 folds are
used for training and the last fold is used for evaluation. This process is
repeated K times, leaving one different fold for evaluation each time.

[Train, Test] = crossvalind('HoldOut', N, P) returns logical
index vectors for cross-validation of N observations by randomly
selecting P*N (approximately) observations to hold out for the evaluation
set. P must be a scalar between 0 and 1. P defaults to 0.5 when omitted,
corresponding to holding 50% out. Using holdout cross-validation within
a loop is similar to K-fold cross-validation one time outside the loop,
except that non-disjointed subsets are assigned to each evaluation.

[Train, Test] = crossvalind('LeaveMOut', N, M), where M is
an integer, returns logical index vectors for cross-validation of N
observations by randomly selecting M of the observations to hold out for
the evaluation set. M defaults to 1 when omitted. Using LeaveMOut
cross-validation within a loop does not guarantee disjointed evaluation
sets. Use K-fold instead.

[Train, Test] = crossvalind('Resubstitution', N, [P,Q])
returns logical index vectors of indices for cross-validation of N
observations by randomly selecting P*N observations for the evaluation
set and Q*N observations for training. Sets are selected in order to

2-67

crossvalind

minimize the number of observations that are used in both sets. P
and Q are scalars between 0 and 1. Q=1-P corresponds to holding out
(100*P)%, while P=Q=1 corresponds to full resubstitution. [P,Q] defaults
to [1,1] when omitted.

[...] = crossvalind(Method, Group, ...) takes the group
structure of the data into account. Group is a grouping vector that
defines the class for each observation. Group can be a numeric vector,
a string array, or a cell array of strings. The partition of the groups
depends on the type of cross-validation: For K-fold, each group is
divided into K subsets, approximately equal in size. For all others,
approximately equal numbers of observations from each group are
selected for the evaluation set. In both cases the training set contains at
least one observation from each group.

[...] = crossvalind(Method, Group, ..., 'Classes', C)
restricts the observations to only those values specified in C. C can be a
numeric vector, a string array, or a cell array of strings, but it is of the
same form as Group. If one output argument is specified, it contains the
value 0 for observations belonging to excluded classes. If two output
arguments are specified, both will contain the logical value false for
observations belonging to excluded classes.

[...] = crossvalind(Method, Group, ..., 'Min', MinValue)
sets the minimum number of observations that each group has in the
training set. Min defaults to 1. Setting a large value for Min can help to
balance the training groups, but adds partial resubstitution when there
are not enough observations. You cannot set Min when using K-fold
cross-validation.

Example 1 Create a 10-fold cross-validation to compute classification error.

load fisheriris
indices = crossvalind('Kfold',species,10);
cp = classperf(species);
for i = 1:10

test = (indices == i); train = ~test;
class = classify(meas(test,:),meas(train,:),species(train,:));

2-68

crossvalind

classperf(cp,class,test)
end
cp.ErrorRate

Approximate a leave-one-out prediction error estimate.

load carbig
x = Displacement; y = Acceleration;
N = length(x);
sse = 0;
for i = 1:100

[train,test] = crossvalind('LeaveMOut',N,1);
yhat = polyval(polyfit(x(train),y(train),2),x(test));
sse = sse + sum((yhat - y(test)).^2);

end
CVerr = sse / 100

Divide cancer data 60/40 without using the 'Benign' observations.
Assume groups are the true labels of the observations.

labels = {'Cancer','Benign','Control'};
groups = labels(ceil(rand(100,1)*3));
[train,test] = crossvalind('holdout',groups,0.6,'classes',...

{'Control','Cancer'});
sum(test) % Total groups allocated for testing
sum(train) % Total groups allocated for training

See Also Bioinformatics Toolbox functions classperf,knnclassify,svmclassify

Statistical Toolbox functions classify, grp2idx, ,

2-69

dayhoff

Purpose Return a Dayhoff scoring matrix

Syntax ScoringMatrix = dayhoff

Description PAM250 type scoring matrix. Order of amino acids in the matrix is A R N
D C Q E G H I L K M F P S T W Y V B Z X *.

See Also Bioinformatics Toolbox functions blosum, gonnet, pam.

2-70

dimercount

Purpose Count dimers in a sequence

Syntax Dimers = dimercount(SeqNT,
'PropertyName', PropertyValue...)

[Dimers, Percent] = dimercount(SeqNT)

dimercount(..., 'Chart', ChartStyle)

Arguments
SeqNT Nucleotide sequence. Enter a character string

or vector of integers.

Examples: 'ACGT' and [1 2 3 4].You can
also enter a structure with the field
Sequence.

ChartStyle Property to select the type of plot. Enter 'pie'
or 'bar'.

Description Dimers = dimercount(SeqNT, 'PropertyName', PropertyValue...)
counts the number of nucleotide dimers in a 1-by-1 sequence and
returns the dimer counts in a structure with the fields AA, AC, AG, AT, CA,
CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT.

• For sequences that have dimers with the character U, the U characters
are added to dimers with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

2-71

dimercount

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

[Dimers, Percent] = dimercount(SeqNT) returns a 4-by-4 matrix
with the relative proportions of the dimers in SeqNT. The rows
correspond to A, C, G, and T in the first element of the dimer, and the
columns correspond to A, C, G, and T in the second element.

dimercount(..., 'Chart', ChartStyle) creates a chart showing the
relative proportions of the dimers. Valid styles are 'Pie' and 'Bar'.

Examples Count the number of dimers in a nucleotide sequence.

dimercount('TAGCTGGCCAAGCGAGCTTG')

ans =
AA: 1
AC: 0
AG: 3
AT: 0
CA: 1
CC: 1
CG: 1
CT: 2
GA: 1
GC: 4
GG: 1
GT: 0
TA: 1
TC: 0
TG: 2
TT: 1

See Also Bioinformatics Toolbox functions aacount, basecount, baselookup,
codoncount, nmercount, ntdensity

2-72

dna2rna

Purpose Convert DNA sequence to RNA sequence

Syntax SeqRNA = dna2rna(SeqDNA)

Arguments
SeqDNA DNA sequence. Enter either a character string

with the characters A, T, G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers from the table Mapping Nucleotide Letters
to Integers on page 2-247. You can also enter a
structure with the field Sequence.

SeqRNA RNA sequence.

Description SeqRNA = dna2rna(SeqDNA) converts a DNA sequence to an RNA
sequence by converting any thymine nucleotides (T) in the DNA
sequence to uracil (U). The RNA sequence is returned in the same
format as the DNA sequence. For example, if SeqDNA is a vector of
integers, then so is SeqRNA.

Examples Convert a DNA sequence to an RNA sequence.

rna = dna2rna('ACGATGAGTCATGCTT')

rna =
ACGAUGAGUCAUGCUU

See Also Bioinformatics Toolbox function rna2dna

MATLAB functions regexp, strrep

2-73

dna2rna

Purpose Convert DNA sequence to RNA sequence

Syntax SeqRNA = dna2rna(SeqDNA)

Arguments
SeqDNA DNA sequence. Enter either a character string

with the characters A, T, G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers from the table Mapping Nucleotide Letters
to Integers on page 2-247. You can also enter a
structure with the field Sequence.

SeqRNA RNA sequence.

Description SeqRNA = dna2rna(SeqDNA) converts a DNA sequence to an RNA
sequence by converting any thymine nucleotides (T) in the DNA
sequence to uracil (U). The RNA sequence is returned in the same
format as the DNA sequence. For example, if SeqDNA is a vector of
integers, then so is SeqRNA.

Examples Convert a DNA sequence to an RNA sequence.

rna = dna2rna('ACGATGAGTCATGCTT')

rna =
ACGAUGAGUCAUGCUU

See Also Bioinformatics Toolbox function rna2dna

MATLAB functions regexp, strrep

2-74

dolayout (biograph)

Purpose Calculate node positions and edge trajectories

Syntax dolayout(BGobj, 'Propertyname', Propertyvalue...)
dolayout(..., 'OnlyPaths', OnlyPathsValue)

Arguments
BGobj Biograph object.

OnlyPaths Property to control the calculation of node position
and edge paths. Enter 'true' to calculate only the
edge paths.

Description dolayout(BGobj, 'Propertyname', Propertyvalue...) calls the
layout engine to calculate the optimal position for each node so that its
2–D rendering is clean and uncluttered, and then calculates the best
curves to represent the edges. The following biograph object properties
interact with the layout engine:

• LayoutType — Selects the layout engine as 'hierarchical',
'equilibrium', or 'radial'.

• LayoutScale — Rescales the sizes of the node before calling the
layout engine. This gives more space to the layout and reduces the
overlapping of nodes.

• NodeAutoSize — When NodeAutoSize is 'on', the layout engine
uses the node properties FontSize, Shape, and LayoutScale to
precalculate the actual size of every node. When NodeAutoSize is
'off', the layout engine uses the node property Size.

dolayout(..., 'OnlyPaths', OnlyPathsValue), when OnlyPaths is
'true', leaves the nodes at their current positions and calculates new
curves for the edges.

Example 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

2-75

dolayout (biograph)

bg = biograph(cm)
bg.nodes(1).Position

Nodes do not have a position yet.

2 Call the layout engine and render the graph.

dolayout(bg)
bg.nodes(1).Position
view(bg)

3 Manually modify a node position and recalculate the paths.

bg.nodes(1).Position = [150 150];
dolayout(bg, 'Onlypaths', true)
view(bg)

See Also Bioinformatics Toolbox methods for the biograph object, biograph,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions get, set

2-76

dnds

Purpose Estimate synonymous and nonsynonymous substitution rates

Syntax [Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2)
dnds(..., 'PropertyName', PropertyValue,...)
dnds(..., 'GeneticCode', GeneticCodeValue)
dnds(..., 'Method', MethodValue)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences. Enter a character

string or a structure with the field Sequence.

GeneticCodeValue Property to select a genetic code. Enter a
code number or code name from the table
Genetic Code on page 2-4. If you use a code
name, you can truncate the name to the first
two characters of the name.

MethodValue Property to select the method for calculating
substitution rates. Enter 'NG', 'LWL', or
'PBL'.

Description [Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2) estimates the
synonymous and nonsynonymous substitution rate per site between
two homologous nucleotide sequences (SeqNT1, SeqNT2) by comparing
codons using the Nei-Gojobori method. This function returns the
nonsynonymous substitution rate (Dn), the synonymous substitution
rate (Ds), the variance for the nonsynonymous substitution rate (Vardn),
and the variance for the synonymous substitutions per site (Vards). Any
codons that include gaps are excluded from calculation. This analysis
considers the number of codons in the shortest sequence.

dnds(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

dnds(..., 'GeneticCode', GeneticCodeValue) calculates
synonymous and nonsynonymous substitution rates using the specified
genetic code. The default is 'Standard' or 1.

2-77

dnds

dnds(..., 'Method', MethodValue) allows you to calculate
synonymous and nonsynonymous substitution rates using the following
approaches:

'NG' — uses the Nei-Gojobori method ’86 (default)

'LWL' — uses the Li-Wu-Luo method ’85

'PBL' — uses the Pamilo-Bianchi-Li method ’93

References [1] Li W, Wu C, Luo C, “A new method for estimating synonymous and
aonsynonymous rates of nucleotide substitution considering the relative
likelihood of nucleotide and codon changes” in Molecular Biology
Evolution, (1984) 2(2):150-174.

[2] Nei M, Gojobori T, ”Simple methods for estimating the numbers of
synonymous and nonsynonymous nucleotide substitutions” in Molecular
Biological Evolution, (1986) 3(5):418-426.

[3] Nei M, Jin L, “Variances of the average numbers of nucleotide
substitutions within and between populations” in Molecular Biology
Evolution, (1989) 6(3):290-300.

[4] Nei M, Kumar S, Molecular Evolution and Phylogenetics. Oxford
University Press. Chapter 4. (2000).

[5] Pamilo P, Bianchi N, “Evolution of the Zfx And Zfy genes: rates and
interdependence between the genes” in Molecular Biology Evolution,
(1993) 10(2): 271-281.

Examples 1 Get two sequences from Genbank for the human immunodeficiency
virus.

gag1 = getgenbank('L11768')
gag2 = getgenbank('L11770')

2 Pairwise align the sequences using the Needleman-Wunsch
algorithm.

2-78

dnds

[sc,al]= nwalign(gag1,gag2,'alpha','nt');

3 Calculate synonymous and nonsynonymous substitution rates.

[dn ds vardn vards] = dnds(al(1,:), al(3,:))

dn =
0.0240

ds =
0.0739

vardn =
2.2745e-005

vards =
2.6447e-004

See Also Bioinformatics Toolbox functions dndsml, geneticcode, nt2aa, seqpdist

2-79

dndsml

Purpose Estimate synonymous-nonsynonymous substitution rates by the
maximum likelihood method

Syntax [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2)
dndsml(..., 'PropertyName', PropertyValue,...)
dndsml(..., 'GeneticCode', GeneticCodeValue)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences. Enter a character string

or a structure with the field Sequence.

GeneticCodeValue Property to select a genetic code. Enter a code
number or code name from the table Genetic
Code on page 2-4. If you use a code name, you
can truncate the name to the first two characters
of the name.

Description [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2) estimates synonymous
and nonsynonymous substitution rates between two homologous
sequences (SeqNT1, SeqNT2) by the maximum likelihood method. dndsml
returns the nonsynonymous substitution rate (Dn), the synonymous
substitution rate (Ds), and the likelihood of this estimate (Like). The
maximum likelihood method is best suited for sequences larger than
100 bases. Gaps are ignored in this analysis. This analysis considers
the number of codons in the shortest sequence.

dndsml(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

dndsml(..., 'GeneticCode', GeneticCodeValue) calculates
synonymous and nonsynonymous substitution rates using the specified
genetic code. The default is 'Standard' or 1.

References [1] Tamura, Nei, Molecular Biology and Evolution, (1993)

[2] Yang, Nielsen, Molecular Biology and Evolution, (2000)

2-80

dndsml

Examples 1 Get two sequences from Genbank for the human immunodeficiency
virus.

gag1 = getgenbank('L11768')
gag2 = getgenbank('L11770')

2 Pairwise align the sequences using the Needleman-Wunsch
algorithm.

[sc,al]= nwalign(gag1,gag2,'alpha','nt');

3 Calculate synonymous and nonsynonymous substitution rates.

[dn ds like] = dndsml(al(1,:), al(3,:))

dn =
0.0259

ds =
0.0624

like =
-2.1864e+003

See Also Bioinformatics Toolbox functions dnds, geneticcode, nt2aa, seqpdist

2-81

emblread

Purpose Read data from EMBL file

Syntax EMBLData = emblread('File',
'PropertyName', PropertyValue)

emblread(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
File EMBL formatted file (ASCII text file). Enter

a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB
character array that contains the text for a
filename.

SequenceOnly Property to control reading only the sequence.
Enter true.

EMBLData MATLAB structure with fields corresponding
to EMBL data.

EMBLSeq MATLAB character string without metadata
for the sequence.

Description EMBLData = emblread('File', 'PropertyName', PropertyValue...)
reads data from an EMBL formatted file (File) and creates a
MATLAB structure (EMBLData) with fields corresponding to the EMBL
two-character line type code. Each line type code is stored as a separate
element in the structure.

EMBLData for the 137.0 version contains the following fields:

Comments
Identification
Accession
SequenceVersion
Datecreated
Dateupdated
Description
Keyword

2-82

emblread

OrganismSpecies
OorganismClassification
Organelle
Reference.Number
Reference.Comment
Reference.Position
Reference{#}.MedLine
Referemce{#}.PubMed
Reference.Authors
Reference.Title
Reference.Location
DatabaseCrossReference
Feature
Basecount
Sequence

Seq = emblread('File', 'SequenceOnly', SequenceOnlyValue),
when SequenceOnly is true, reads only the sequence information.

Examples Get sequence information from the Web, save to a file, and then read
back into MATLAB.

getembl('X00558','ToFile','rat_protein.txt');
EMBLData = emblread('rat_protein.txt')

See Also Bioinformatics Toolbox functions fastaread,
featuresparse,genbankread, getembl, seqtool

2-83

exprprofrange

Purpose Calculate range of gene expression profiles

Syntax exprprofrange(Data, 'PropertyName', PropertyValue...)
[Range, LogRange] = exprprofrange(Data)

exprprofrange(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHist Property to control displaying a histogram with
range data. Enter either true (include range
data) or false. The default value is false.

Description exprprofrange(Data, 'PropertyName', PropertyValue...)
calculates the range of each expression profile in a data set (Data).

[Range, LogRange] = exprprofrange(Data) returns the log range,
that is, log(max(prof))- log(min(prof)), of each expression profile.
If you do not specify output arguments, exprprofrange displays a
histogram bar plot of the range.

exprprofrange(..., 'ShowHist', ShowHistValue), when ShowHist is
true, displays a histogram of the range data.

Examples Calculate the range of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
range = exprprofrange(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox function exprprofvar, generangefilter

2-84

exprprofvar

Purpose Calculate variance of gene expression profiles

Syntax exprprofvar(Data, 'PropertyName', PropertyValue...)

exprprofvar(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHist Property to control the display of a histogram with
variance data. Enter true.

Description exprprofvar(Data, 'PropertyName', PropertyValue...) calculates
the variance of each expression profile in a data set (Data). If you do
not specify output arguments, this function displays a histogram bar
plot of the range.

exprprofvar(..., 'ShowHist', ShowHistValue), when ShowHist is
true, displays a histogram of the range data .

Examples Calculate the variance of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
datavar = exprprofvar(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox functions exprprofrange, generangefilter,
genevarfilter

2-85

fastaread

Purpose Read data from FASTA file

Syntax FASTAData = fastaread('File')
[Header, Sequence] = fastaread('File')
multialignread(..., ’PropertyName', PropertyValue,...)
multialignread(..., 'IgnoreGaps', IgnoreGapsValue)

Arguments
File FASTA formatted file (ASCII text file). Enter

a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB
character array that contains the text for a
filename.

IgnoreGapsValue Property to control removing gap symbols.

FASTAData MATLAB structure with the fields Header and
Sequence.

Description fastaread reads data from a FASTA formatted file into a MATLAB
structure with the following fields:

Header
Sequence

A file with a FASTA format begins with a right angle bracket (>) and a
single line description. Following this description is the sequence as a
series of lines with fewer than 80 characters. Sequences are expected to
use the standard IUB/IUPAC amino acid and nucleotide letter codes.

For a list of codes, see aminolookup and baselookup.

FASTAData = fastaread('File') reads a file with a FASTA format
and returns the data in a structure. FASTAData.Header is the header
information, while FASTAData.Sequence is the sequence stored as a
string of letters.

[Header, Sequence] = fastaread('File') reads data from a file
into separate variables. If the file contains more than one sequence,

2-86

fastaread

then header and sequence are cell arrays of header and sequence
information.

multialignread(..., ’PropertyName', PropertyValue,...)defines
optional properties. The property name/value pairs can be in any format
supported by the function set (for example, name-value string pairs,
structures, and name-value cell array pairs).

multialignread(..., 'IgnoreGaps', IgnoreGapsValue), when
IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from
the sequences. Default is false.

Examples Read the sequence for the human p53 tumor gene.

p53nt = fastaread('p53nt.txt')

Read the sequence for the human p53 tumor protein.

p53aa = fastaread('p53aa.txt')

Read the human mitochondrion genome in FASTA format.

entrezSite = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?'
textOptions = '&txt=on &view=fasta'
genbankID = '&list_uids=NC_001807'
mitochondrion = fastaread([entrezSite textOptions genbankID])

See Also Bioinformatics Toolbox function emblread, fastawrite, genbankread,
genpeptread, multialignread, seqprofile, seqtool

2-87

fastawrite

Purpose Write to file with FASTA format

Syntax fastawrite('File', Data)
fastawrite('File', Header, Sequence)

Arguments
File Enter either a filename or a path and filename

supported by your operating system. (ASCII text
file).

Data Enter a character string with a FASTA format, a
sequence object, a structure containing the fields
Sequence and Header, or a GenBank/GenPept
structure.

Header Information about the sequence.

Sequence Nucleotide or amino acid sequence using the
standard IUB/IUPAC codes. For a list of valid
characters, see Mapping Amino Acid Letters to
Integers on page 2-2 and Mapping Nucleotide
Letters to Integers on page 2-247.

Description fastawrite('File', Data) writes the contents of Data to a file with a
FASTA format.

fastawrite('File', Header, Sequence) writes header and sequence
information to a file with a FASTA format.

Examples %get the sequence for the human p53 gene from GenBank.
seq = getgenbank('NM_000546')

%find the CDS line in the FEATURES information.
cdsline = strmatch('CDS',seq.Features)

%read the coordinates of the coding region.
[start,stop] = strread(seq.Features(cdsline,:),'%*s%d..%d')

2-88

fastawrite

%extract the coding region.
codingSeq = seq.Sequence(start:stop)

%write just the coding region to a FASTA file.
fastawrite('p53coding.txt','Coding region for p53',codingSeq);

Save multiple sequences.

data(1).Sequence = 'ACACAGGAAA'
data(1).Header = 'First sequence'
data(2).Sequence = 'ACGTCAGGTC'
data(2).Header = 'Second sequence'

fastawrite('my_sequences.txt', data)
type('my_sequences.txt')

>First sequence
ACACAGGAAA

>Second sequence
ACGTCAGGTC

See Also Bioinformatics Toolbox function fastaread, seqtool

2-89

galread

Purpose Read microarray data from a GenePix array list file

Syntax GALData = galread('File')

Arguments
File GenePix Array List formatted file (GAL). Enter a filename,

or enter a path and filename.

Description galread reads data from a GenePix formatted file into a MATLAB
structure.

GALData = galread('File') reads in a GenePix Array List formatted
file (File) and creates a structure (GALData) containing the following
fields:

Header
BlockData
IDs
Names

The field BlockData is an N-by-3 array. The columns of this array are
the block data, the column data, and the row data respectively. For
more information on the GAL format, see

http://www.axon.com/GN_GenePix_File_Formats.html#gal

For a list of supported file format versions, see

http://www.axon.com/gn_GPR_Format_History.html

GenePix is a registered trademark of Axon Instruments, Inc.

See Also Bioinformatics Toolbox functions affyread, geosoftread, gprread,
imageneread, sptread

2-90

genbankread

Purpose Read data from a GenBank file

Syntax GenBankData = genbankread('File')

Arguments
File GenBank formatted file (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to
a file. File can also be a MATLAB character array
that contains the text of a GenBank formatted file.

GenBankData MATLAB structure with fields corresponding to
GenBank data.

Discussion genbankread reads data from a GenBank formatted file into a MATLAB
structure.

GenBankData = genbankread('File') reads in a GenBank formatted
file (File) and creates a structure (Data) containing fields corresponding
to the GenBank keywords. Each separate sequence listed in the
output structure (GenBankData) is stored as a separate element of the
structure.

GenBankData contains the following fields:

LocusName
LocusSequenceLength
LocusMoleculeType
LocusGenBankDivision
LocusModificationDate
Definition
Accession
Version
GI
Keywords
Segment
Source
SourceOrganism
Reference.Number

2-91

genbankread

Reference.Authors
Reference.Title
Reference.Journal
Reference.MedLine
Reference.PubMed
Reference.Remark
Comment
Features
BaseCount
Sequence

Examples Get sequence information for the gene HEXA, store in a file, and then
read back into MATLAB.

getgenbank('nm_000520', 'ToFile', 'TaySachs_Gene.txt')
s = genbankread('TaySachs_Gene.txt')

See Also Bioinformatics Toolbox functions emblread, getgenbank, fastaread,
genpeptread, getgenbank, scfread, seqtool, featuresparse

2-92

geneentropyfilter

Purpose Remove genes with low entropy expression values

Syntax Mask = geneentropyfilter(Data,
'PropertyName', PropertyValue...)

[Mask, FData] = geneentropyfilter(Data)
[Mask, FData, FNames] = geneentropyfilter(Data, Names)

geneentropyfilter(..., 'Percentile', PercentileValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column
is the results for all genes from one experiment.

Names Cell array with the same number of rows as
Data. Each row contains the name or ID of the
gene in the data set.

Percentile Property to specify a percentile below which gene
data is removed. Enter a value from 0 to 100.

Description Mask = geneentropyfilter(Data, 'PropertyName',
PropertyValue...) identifies gene expression profiles in Data with
entropy values less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater than
the threshold have a value of 1, and those with a variance less then
the threshold are 0.

[Masks, FData] = geneentropyfilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Mask, FData,FNames] = geneentropyfilter(Data, Names) returns
a filtered names array (FNames), where Names is a cell array of the
names of the genes corresponding to each row of Data. FNames can also
be created using FNames = Names(I).

2-93

geneentropyfilter

geneentropyfilter(..., 'Percentile', PercentileValue) removes
from Data gene expression profiles with entropy values less than the
percentile Percentile.

Reference

Kohane, I.S., Kho, A.T., Butte, A.J., Microarrays for an Integrative
Genomics, MIT Press, 2003.

Examples load yeastdata
[fyeastvalues, fgenes] = geneentropyfilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
genelowvalfilter, generangefilter, genevarfilter

2-94

genelowvalfilter

Purpose Remove gene profiles with low absolute values

Syntax Mask = genelowvalfilter(Data,
'PropertyName', PropertyValue...)

[Mask, FData] = genelowvalfilter(Data)
[Mask, FData, FNames] = genelowvalfilter(Data, Names)

genelowvalfilter(..., 'Percentile', PercentileValue)
genelowvalfilter(..., 'AbsValue', AbsValueValue)
genelowvalfilter(..., 'AnyVal', AnyValValue)

Arguments
Data Matrix where each row corresponds to the experimental

results for one gene. Each column is the results for all
genes from one experiment.

Names Cell array with the same number of rows as Data. Each
row contains the name or ID of the gene in the data set.

Percentile Property to specify a percentile below which gene
expression profiles are removed. Enter a value from
0 to 100.

AbsValue Property to specify an absolute value below which gene
expression profiles are removed.

AnyVal Property to select the minimum or maximum absolute
value for comparison with AbsValue. If AnyValValue is
true, selects the minimum absolute value. If AnyVal
is false, selects the maximum absolute value. The
default value is false.

Description Gene expression profile experiments have data where the absolute
values are very low. The quality of this type of data is often bad due to
large quantization errors or simply poor spot hybridization.

Mask = genelowvalfilter(Data, 'PropertyName',
PropertyValue...) identifies gene expression profiles in
Data with all absolute values less than the 10th percentile.

2-95

genelowvalfilter

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with absolute expression levels
greater than the threshold have a value of 1, and those with absolute
expression levels less then the threshold are 0.

[Mask, FData] = genelowvalfilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Mask, FData,FNames] = genelowvalfilter(Data, Names) returns a
filtered names array (FNames), where Names is a cell array of the names
of the genes corresponding to each row of Data. FNames can also be
created using FNames = Names(I).

genelowvalfilter(..., 'Percentile', PercentileValue) removes
from Data gene expression profiles with all absolute values less than
the percentile Percentile.

genelowvalfilter(..., 'AbsValue', AbsValueValue) calculates the
maximum absolute value for each gene expression profile and removes
the profiles with maximum absolute values less than AbsVal.

genelowvalfilter(..., 'AnyVal', AnyValValue), when AnyVal is
true, calculates the minimum absolute value for each gene expression
profile and removes the profiles with minimum absolute values less
than AnyVal.

Reference

Kohane, I.S., Kho, A.T., Butte, A.J., Microarrays for an Integrative
Genomics, MIT Press, 2003.

Examples [data, labels, I, FI] = genelowvalfilter(data,labels,'AbsValue',5);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
geneentropyfilter, generangefilter , genevarfilter

2-96

generangefilter

Purpose Remove gene profiles with small profile ranges

Syntax Mask = generangefilter(Data,
'PropertyName', PropertyValue...)

[Mask, FData] generangefilter(Data)
[Mask, FData, FNames] = generangefilter(Data, Names)

generangefilter(..., 'Percentile', PercentileValue)
generangefilter(..., 'AbsValue', AbsValueValue)
generangefilter(..., 'LOGPercentile', LOGPercentileValue)
generangefilter(..., 'LOGValue', LOGValueValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column is the
results for all genes from one experiment.

Names Cell array with the same number of rows as Data.
Each row contains the name or ID of the gene in the
data set.

Percentile Property to specify a percentile below which gene
expression profiles are removed. Enter a value from
0 to 100.

AbsValue Property to specify an absolute value below which
gene expression profiles are removed.

LOGPercentileProperty to specify the LOG of a percentile.

LOGValue Property to specify the LOG of an absolute value.

Description Mask = generangefilter(Data, 'PropertyName',
PropertyValue...) calculates the range for each gene
expression profile in Data, and then identifies the expression profiles
with ranges less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a range greater then

2-97

generangefilter

the threshold have a value of 1, and those with a range less then the
threshold are 0.

[Maks, FData] = generangefilter(Data) returns a filtered
data matrix (FData). FData can alos be created using FData =
Data(find(I),:).

[Maks, FData, FNames] = generangefilter(Data, Names) returns a
filtered names array (FNames), where Names is a cell array of the names
of the genes corresponding to each row of Data. FNames can also be
created using FNames = Names(I).

generangefilter(..., 'Percentile', PercentileValue) removes
from Data gene expression profiles with ranges less than the percentile
Percentile.

generangefilter(..., 'AbsValue', AbsValueValue) removes from
Data gene expression profiles with ranges less than AbsValue.

generangefilter(..., 'LOGPercentile', LOGPercentileValue)
filters genes with profile ranges in the lowest LOGPercentile percent
of the log range.

generangefilter(..., 'LOGValue', LOGValueValue) filters genes
with profile log ranges lower than LOGValue.

Reference

Kohane, I.S., Kho, A.T., Butte, A.J., Microarrays for an Integrative
Genomics, MIT Press, 2003.

Examples load yeastdata
[mask, fyeastvalues, fgenes] = generangefilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange,
exprprofvargeneentropyfilter, genelowvalfilter, genevarfilter

2-98

geneticcode

Purpose Return nucleotide codon to amino acid mapping

Syntax Map = geneticcode(GeneticCode)
geneticcode(GeneticCode)

Arguments
GeneticCode Enter a code number or code name from the table

Genetic Code below. If you use a code name, you
can truncate the name to the first two characters
of the name.

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial,
and Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

2-99

geneticcode

Code Number Code Name

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description Map = geneticcode returns a structure with a mapping of nucleotide
codons to amino acids for the standard genetic code.

geneticcode(GeneticCode)returns a structure of the mapping
for alternate genetic codes, where GeneticCode is either the
transl_table (code) number from the NCBI Genetics Web page
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c)
or one of the supported names in the genetic code table above.

Examples List the mapping of nucleotide codons to amino acids for a specific
genetic code.

wormcode = geneticcode('Flatworm Mitochondrial');

See Also Bioinformatics Toolbox functions aa2nt, aminolookup, baselookup,
codonbias, dnds, dndsml, nt2aa, revgeneticcode, seqshoworfs,
seqtool

2-100

genevarfilter

Purpose Filter genes with small profile variance

Syntax Mask = genevarfilter(Data,
'PropertyName', PropertyValue...)

[Mask, FData] = genevarfilter(Data)
[Mask, FData, FNames] = genevarfilter(Data, Names)

genevarfilter(..., 'Percentile', PercentileValue)
genevarfilter(..., 'AbsValue', AbsValueValue)

Arguments
Data Matrix where each row corresponds to a gene. The first

column is the names of the genes, and each additional
column is the results from an experiment.

Names Cell array with the same number of rows as Data. Each
row contains the name or ID of the gene in the data set.

Percentile Property to specify a percentile below which gene
expression profiles are removed. Enter a value from
0 to 100.

AbsValue Property to specify an absolute value below which gene
expression profiles are removed.

Description Gene profiling experiments have genes that exhibit little variation in
the profile and are generally not of interest in the experiment. These
genes are commonly removed from the data.

Mask = genevarfilter(Data, 'PropertyName', PropertyValue...)
calculates the variance for each gene expression profile in Data and
then identifies the expression profiles with a variance less than the
10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater than
the threshold have a value of 1, and those with a variance less than
the threshold are 0.

2-101

genevarfilter

[Mask, FData] = genevarfilter(Data) returns the filtered
data matrix FData. FData can also be created using FData =
Data(find(I),:).

[Mask, FData, FNames] = genevarfilter(Data, Names) returns a
filtered names array (FNames). Names is a cell array of the names of the
genes corresponding to each row of Data. FNames can also be created
using FNames = Names(I).

genevarfilter(..., 'Percentile', PercentileValue) removes from
Data gene expression profiles with a variance less than the percentile
Percentile.

genevarfilter(..., 'AbsValue', AbsValValue) removes from Data
gene expression profiles with a variance less than AbsValue.

Reference

Kohane, I.S., Kho, A.T., Butte, A.J., Microarrays for an Integrative
Genomics, MIT Press, 2003.

Examples load yeastdata
[fyeastvalues, fgenes] = genevarfilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
generangefilter, ,geneentropyfilter, genelowvalfilter

2-102

genpeptread

Purpose Read data from a GenPept file

Syntax GenPeptData = genpeptread('File')

Arguments
File GenPept formatted file (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text of a GenPept file.

Description genpeptread reads data from a GenPept formatted file into a MATLAB
structure.

Note NCBI has recently changed the name of their protein search
engine from GenPept to Entrez Protein. However, the function names
in the Bioinformatics Toolbox (getgenpept, genpeptread) are unchanged
representing the still-used GenPept report format.

GenPeptData = genpeptread('File') reads in the GenPept formatted
sequence from File and creates a structure GenPeptData, containing
fields corresponding to the GenPept keywords. Each separate sequence
listed in File is stored as a separate element of the structure.
GenPeptDATA contains these fields:

LocusName
LocusSequenceLength
LocusMoleculeType
LocusGenBankDivision
LocusModificationDate
Definition
Accession
PID
Version
GI

2-103

genpeptread

DBSource
Keywords
Source
SourceDatabase
SourceOrganism
Reference.Number
Reference.Authors
Reference.Title
Reference.Journal
Reference.MedLine
Reference.PubMed
Reference.Remark
Comment
Features
Weight
Length
Sequence

Examples Get sequence information for the protein coded by the gene HEXA, save
to a file, and then read back into MATLAB.

getgenpept('p06865', 'ToFile', 'TaySachs_Protein.txt')
genpeptread('TaySachs_Protein.txt')

See Also Bioinformatics Toolbox functions fastaread, genbankread, getgenpept,
pdbread, pirread, featuresparse, seqtool

2-104

geosoftread

Purpose Read data from a Gene Expression Omnibus (GEO) SOFT file

Syntax GEOSOFTData = geosoftread('File')

Arguments
File Gene Expression Omnibus (GEO) formatted file (ASCII

text file). Enter a filename, a path and filename, or a
URL pointing to a file. File can also be a MATLAB
character array that contains the text of a GEO file.

Description geosoftread reads data from a Gene Expression Omnibus (GEO) SOFT
formatted file (File), and creates a MATLAB structure (GEOSOFTdata)
with the following fields:

Scope
Accession
Header
ColumnDescriptions
ColumnNames
Data

Fields correspond to the GenBank keywords. Each separate entry listed
in File is stored as a separate element of the structure.

Examples Get data from the GEO Web site and save it to a file.

geodata = getgeodata('GSM3258','ToFile','GSM3258.txt');

Use geosoftread to access a local copy from disk instead of accessing
it from the GEO Web site.

geodata = geosoftread('GSM3258.txt')

See Also Bioinformatics Toolbox functions galread, getgeodata, gprread,
sptread

2-105

get (phytree)

Purpose Get information about a phylogenetic tree object

Syntax [Value1, Value2,...] = get(Tree, Name1,Name2,...)
get(Tree)
V = get(Tree)

Arguments
Tree Phytree object created with the function

phytree.

Name Property name for a phytree object.

Description [Value1, Value2,...] = get(Tree, Name1,Name2,...) returns the
specified properties from a phytree object (Tree).

The valid choices for 'Name' are

'Pointers' Branch to leaf/branch connectivity list

'Distances' Edge length for every leaf/branch

'NumLeaves' Number of leaves

'NumBranches' Number of branches

'NumNodes' Number of nodes (NumLeaves + Numbranches)

'LeafNames' Names of the leaves

'BranchNames' Names of the branches

'NodeNames' Names of all the nodes

get(Tree) displays all property names and their current values for a
phytree object (Tree).

V = get(Tree) returns a structure where each field name is the name
of a property of a phytree object (Tree) and each field contains the value
of that property.

2-106

get (phytree)

Examples 1 Read in a phylogenetic tree from a file.

tr = phytreeread('pf00002.tree')

2 Get the names of the leafs.

protein_names = get(tr,'LeafNames')

protein_names =

'BAI2_HUMAN/917-1197'
'BAI1_HUMAN/944-1191'
'O00406/622-883'
...

See Also Bioinformatics Toolbox functions phytree, phytreeread, and phytree
object methods select, getbyname

2-107

getancestors (biograph)

Purpose Find ancestors in a biograph object

Syntax Nodes = getancestors(BiographNode)
Nodes = getancestors(BiographNode, NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive
integer.

Description Nodes = getancestors(BiographNode) returns a node (BiographNode)
and all of its direct ancestors.

Nodes = getancestors(BiographNode, NumGenerations) finds the
node (BiographNode) and its direct ancestors up to a specified number
of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find one generation of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2));
set(ancNodes,'Color',[1 .7 .7]);
bg.view;

2-108

getancestors (biograph)

3 Find two generations of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2),2);
set(ancNodes,'Color',[.7 1 .7]);
bg.view;

2-109

getancestors (biograph)

See Also Bioinformatics Toolbox methods for the biograph object, biograph,
dolayout, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

2-110

getblast

Purpose Get BLAST report from NCBI Web site

Syntax Data = getblast(RID)
getblast(..., 'PropertyName', PropertyValue,...)
getblast(..., 'Descriptions', DescriptionsValue)
getblast(..., 'Alignments', AlignmentsValue)
getblast(..., 'ToFile', ToFileValue)
getblast(..., 'FileFormat', FileFormatValue)

Arguments
RID BLAST Request ID (RID) from the function

blastncbi.

DescriptionsValue Property to specify the number of descriptions
in a report.

AlignmentsValue Property to select the number of alignments
in a report. Enter values from 1 to 100. The
default value is 50.

ToFileValue Property to enter a filename for saving report
data.

FileFormatValue Property to select the format of the file named
in ToFileValue. Enter either 'TEXT' or
’HTML’.The default value is 'TEXT'.

Description BLAST (Basic Local Alignment Search Tool) reports offer a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.
getblast parses NCBI BLAST reports, including BLASTN, BLASTP,
BLASTX, TBLASTN, TBLASTX and psi-BLAST.

Data = getblast(RID) reads a BLAST Request ID (RID) and returns
the report data in a structure (Data). The NCBI Request ID (RID) must

2-111

getblast

be a recently generated report because NCBI purges reports after 24
hours.

getblast(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getblast(..., 'Descriptions', DescriptionsValue) includes the
specified number of descriptions (DescriptionsValue) in the report.

getblast(..., 'Alignments', AlignmentsValue) includes the
specified number of alignments in the report.

getblast(..., 'ToFile', ToFileValue) saves the data returned from
the NCBI BLAST report to a file (ToFileValue). The default format for
the file is text, but you can specify HTML with the property FileFormat.

getblast(..., 'FileFormat', FileFormatValue) returns the report
in the specified format (FileFormatValue).

For more information about reading and interpreting BLAST reports,
see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

Example 1 Run a BLAST search with an NCBI accession number.

RID = blastncbi('AAA59174','blastp','expect',1e-10)

2 Pass the RID to GETBLAST to parse the report, load it into a
MATLAB structure, and save a copy as a text file.

report = getblast(RID,'TOFILE','Report.txt')

See Also Bioinformatics Toolbox functions blastncbi, blastread

2-112

getbyname (phytree)

Purpose Select branches and leaves from a phytree object

Syntax S = getbyname(Tree, Expression)
S = getbyname(Tree, String,
'Exact', true)

Arguments
Tree Phytree object created with the function phytree.

Expression Regular expression. When Expression is a cell
array of strings, getbyname returns a matrix
where every column corresponds to every query in
Expression.For information about the symbols that
you can use in a matching regular expression, see
the MATLAB function regexp.

String Char string or cell array of char strings.

Description S = getbyname(Tree, Expression) returns a logical vector (S) of size
NumNodes-by-1 with the node names of a phylogenetic tree (Tree) that
match the regular expression (Expression) regardless of letter case.

S = getbyname(Tree, String, 'Exact', true) looks for exact string
matches and ignores case. When String is a cell array of char strings,
getbyname returns a vector with indices.

Examples 1 Load a phylogenetic tree created from a protein family.

tr = phytreeread('pf00002.tree');

2 Select all the ’mouse’ and ’human’ proteins.

sel = getbyname(tr,{'mouse','human'});
view(tr,any(sel,2));

See Also Bioinformatics Toolbox phytree and phytree object methods prune,
select, get

2-113

getcanonical (phytree)

Purpose Calculate the canonical form of a phylogenetic tree

Syntax Pointers = getcanonical(Tree)
[Pointers, Distances, Names] = getcanonical(Tree)

Arguments
Tree Phytree object created with the function

phytree.

Description Pointers = getcanonical(Tree) returns the pointers for the canonical
form of a phylogenetic tree (Tree). In a canonical tree the leaves are
ordered alphabetically and the branches are ordered first by their width
and then alphabetically by their first element. A canonical tree is
isomorphic to all the trees with the same skeleton independently of the
order of their leaves and branches.

[Pointers, Distances, Names] = getcanonical(Tree) returns,
in addition to the pointers described above, the reordered distances
(Distances) and node names (Names).

Examples 1 Create two phylogenetic trees with the same skeleton but slightly
different distances.

b = [1 2; 3 4; 5 6; 7 8;9 10];
tr_1 = phytree(b,[.1 .2 .3 .3 .4]');
tr_2 = phytree(b,[.2 .1 .2 .3 .4]');

2 Plot the trees.

plot(tr_1)
plot(tr_2)

3 Check whether the trees have an isomorphic construction.

isequal(getcanonical(tr_1),getcanonical(tr_2))

2-114

getcanonical (phytree)

ans =
1

See Also Bioinformatics Toolbox functions phytreeread, and phytree object
methods getbyname, select, subtree, phytree.

2-115

getdescendants (biograph)

Purpose Find descendants in a biograph object

Syntax Nodes = getdescendants(BiographNode)
Nodes = getdescendants(BiographNode, NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive integer.

Description Nodes = getdescendants(BiographNode) finds a given node
(BiographNode) all of its direct descendants.

Nodes = getdescendants(BiographNode, NumGenerations) finds the
node (BiographNode) and all of its direct descendants up to a specified
number of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find one generation of descendants for node 4.

desNodes = getdescendants(bg.nodes(4));
set(desNodes,'Color',[1 .7 .7]);
bg.view;

2-116

getdescendants (biograph)

3 Find two generations of descendants for node 4.

desNodes = getdescendants(bg.nodes(4),2);
set(desNodes,'Color',[.7 1 .7]);
bg.view;

2-117

getdescendants (biograph)

See Also Bioinformatics Toolbox methods for the biograph object, biograph,
dolayout, getancestors, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions get, set

2-118

getedgesbynodeid (biograph)

Purpose Get handles to edges in graph

Syntax Edges = getedgesbynodeid(BGobj, SourceIDs, SinkIDs)

Arguments
BGobj Biograph object.

SourceIDs,
SinkIDs

Enter a cell string, or an empty cell array (gets
all edges).

Description Edges = getedgesbynodeid(BGobj, SourceIDs, SinkIDs) gets the
edge handles that connect the specified source nodes (SourceIDs) to
the specified sink nodes (SinkIDs).

Example 1 Create a biograph object for the Hominidae family.

species = {'Homosapiens','Pan','Gorilla','Pongo','Baboon',...
'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);
bg = biograph(cm, species);

2 Find all the edges that connect to the Homosapiens node.

EdgesIn = getedgesbynodeid(bg,[],'Homo');
EdgesOut = getedgesbynodeid(bg,'Homo');
set(EdgesIn,'LineColor',[0 1 0]);
set(EdgesOut,'LineColor',[1 0 0]);
bg.view;

3 Find all edges that connect members of the Cercopithecidae family to
members of the Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};
Hominidae = {'Homo','Pan','Gorilla','Pongo'};
edgesSel = getedgesbynodeid(bg,Cercopithecidae,Hominidae);
set(bg.edges,'LineColor',[.5 .5 .5]);
set(edgesSel,'LineColor',[0 0 1]);

2-119

getedgesbynodeid (biograph)

bg.view;

See Also Bioinformatics Toolbox methods for the biograph object, biograph,
dolayout, getancestors, getdescendants, getnodesbyid,
getrelatives, view

MATLAB functions get, set

2-120

getembl

Purpose Retrieve sequence information from EMBL database

Syntax Data = getembl('AccessionNumber',
'PropertyName', PropertyValue...)

getembl(..., 'ToFile', ToFileValue)
getembl(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter a

unique combination of letters and numbers

ToFile Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

SequenceOnly Property to control getting a sequence without
the metadata. Enter true or false.

Description getembl retrieves information from the European Molecular Biology
Laboratory (EMBL) database for nucleotide sequences. This database is
maintained by the European Bioinformatics Institute (EBI). For more
details about the EMBL-Bank database, see

http://www.ebi.ac.uk/embl/Documentation/index.html

Data = getembl('AccessionNumber', 'PropertyName',
PropertyValue...) searches for the accession number in the EMBL
database (http://www.ebi.ac.uk/embl) and returns a MATLAB
structure containing the following fields:

Comments
Identification
Accession
SequenceVersion
DateCreated
DateUpdated

2-121

getembl

Description
Keyword
OrganismSpecies
OrganismClassification
Organelle
Reference
DatabaseCrossReference
Feature
BaseCount
Sequence

getembl(..., 'ToFile', ToFileValue) returns a structure containing
information about the sequence and saves the information in a file
using an EMBL data format. If you do not give a location or path to the
file, the file is stored in the MATLAB current directory. Read an EMBL
formatted file back into MATLAB using the function emblread.

getembl(..., 'SequenceOnly', SequenceOnlyValue) if SequenceOnly
is true, returns only the sequence information without the metadata.

Examples Retrieve data for the rat liver apolipoprotein A-I.

emblout = getembl('X00558')

Retrieve data for the rat liver apolipoprotein and save in the file
rat_protein. If a filename is given without a path, the file is stored in
the current directory.

Seq = getembl('X00558','ToFile','c:\project\rat_protein.txt')

Retrieve only the sequence for the rat liver apolipoprotein.

Seq = getembl('X00558','SequenceOnly',true)

See Also Bioinformatics Toolbox functions emblread, getgenbank, getgenpept,
getpdb, getpir, seqtool

2-122

getgenbank

Purpose Retrieve sequence information from GenBank database

Syntax Data = getgenbank('AccessionNumber',
'PropertyName',PropertyValue...)

getgenbank(..., 'ToFile', ToFileValue)
getgenbank(..., 'FileFormat', FileFormatValue)
getgenbank(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a unique combination of letters and numbers.

ToFile Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

FileFormat Property to select the format for the file
specified with the property ToFileValue. Enter
either 'GenBank' or 'FASTA'.

SequenceOnly Property to control getting the sequence only.
Enter either true or false.

Description getgenbank retrieves nucleotide and amino acid sequence information
from the GenBank database. This database is maintained by the
National Center for Biotechnology Information (NCBI). For more details
about the GenBank database, see

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenbank('AccessionNumber', 'PropertyName',
PropertyValue...) searches for the accession number in the GenBank
database and returns a MATLAB structure containing information
for the sequence. If an error occurs while retrieving the GenBank
formatted information, then an attempt is make to retrieve the FASTA
formatted data.

2-123

getgenbank

getgenbank(..., 'ToFile', ToFileValue) saves the data returned
from GenBank in a file. If you do not give a location or path to the file,
the file is stored in the MATLAB current directory. Read a GenBank
formatted file back into MATLAB using the function genbankread.

getgenbank(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format (FileFormatValue).

getgenbank(..., 'SequenceOnly', SequenceOnlyValue) when
SequenceOnly is true, returns only the sequence as a character array.
When the properties SequenceOnly and ToFile are used together, the
output file is in the FASTA format.

getgenbank(...) displays the information to the screen without returning
data to a variable. The displayed information includes hyperlinks to the
URLS used to search for and retrieve the data.

Examples Retrieve the sequence from chromosome 19 that codes for the human
insulin receptor and store it in structure S.

S = getgenbank('M10051')

S =

LocusName: 'HUMINSR'
LocusSequenceLength: '4723'
LocusNumberofStrands: ''

LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'
LocusModificationDate: '06-JAN-1995'

Definition: 'Human insulin receptor mRNA, complete cds.'
Accession: 'M10051'

Version: 'M10051.1'
GI: '186439'

Keywords: 'insulin receptor; tyrosine kinase.'
Segment: []
Source: 'Homo sapiens (human)'

2-124

getgenbank

SourceOrganism: [3x65 char]
Reference: {[1x1 struct]}

Comment: [14x67 char]
Features: [51x74 char]

CDS: [139 4287]
Sequence: [1x4723 char]

SearchURL: [1x105 char]
RetrieveURL: [1x95 char]

See Also Bioinformatics Toolbox functions featuresparse,genbankread, getembl,
getgenpept, getpdb, getpir, seqtool

2-125

getgenpept

Purpose Retrieve sequence information from GenPept database

Syntax Data = getgenpept('AccessionNumber',
'PropertyName', PropertyValue...)

getgenpept(..., 'ToFile', ToFileValue)
getgenpept(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a combination of letters and numbers.

ToFile Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

FileFormat Property to select the format for the file
specified with the property ToFileValue.
Enter either 'GenBank' or 'FASTA'.

SequenceOnly Property to control getting the sequence only.
Enter either true or false.

Description getgenpept retrieves a protein (amino acid) sequence and sequence
information from the database GenPept. This database is a translation
of the nucleotide sequences in GenBank and is maintained by the
National Center for Biotechnology Information (NCBI).

Note NCBI has recently changed the name of their protein search
engine from GenPept to Entrez Protein. However, the function names
in the Bioinformatics Toolbox (getgenpept, genpeptread) are unchanged
representing the still-used GenPept report format.

For more details about the GenBank database, see

2-126

getgenpept

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenpept('AccessionNumber',
'PropertyName',PropertyValue...) searches for the
accession number in the GenPept database and returns a MATLAB
structure containing for the sequence. If an error occurs while
retrieving the GenBank formatted information, then an attempt is
make to retrieve the FASTA formatted data.

getgenpept(..., 'ToFile', ToFileValue) saves the information in
a file. If you do not give a location or path to the file, the file is stored
in the MATLAB current directory. Read a GenPept formatted file back
into MATLAB using the function genpeptread

getgenpept(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format FileFormatValue.

getgenpept(..., 'SequenceOnly', SequenceOnlyValue) returns only
the sequence information without the metadata if SequenceOnly is
true. When the properties SequenceOnly and ToFile are used together,
the output file is in the FASTA format.

getgenpept(...) displays the information to the screen without
returning data to a variable. The displayed information includes
hyperlinks to the URLs used to search for and retrieve the data.

Examples Retrieve the sequence for the human insulin receptor and store it in
structure Seq.

Seq = getgenpept('AAA59174')

See Also Bioinformatics Toolbox functions featuresparse,genpeptread, getembl,
getgenbank, getpdb, getpir

2-127

getgeodata

Purpose Get Gene Expression Omnibus (GEO) data

Syntax Data = getgeodata('AccessionNumber'
'PropertyName', PropertyValue...)

getgeodata(..., 'ToFile', ToFileValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a combination of letters and numbers.

ToFile Property to specify the location and filename
for saving data. Enter either a filename, or a
path and filename supported by your system
(ASCII text file).

Description Data = getgeodata('AccessionNumber',
'PropertyName',PropertyValue...) searches for the
accession number in the Gene Expression Omnibus database and
returns a MATLAB structure containing the following fields:

Scope
Accession
Header
ColumnDescriptions
ColumnNames
Data

getgeodata(..., 'ToFile', ToFileValue) saves the data returned
from the database to a file. Read a GenPept formatted file back into
MATLAB using the function gensoftread.

For more information, see

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

2-128

getgeodata

Examples geoStruct = getgeodata('GSM1768')

See Also Bioinformatics Toolbox functions geosoftread, getgenbank, getgenpept

2-129

gethmmalignment

Purpose Retrieve multiple aligned sequences from the PFAM database

Syntax ‘
AlignData = gethmmalignment('PFAMKey',

'PropertyName', PropertyValue...)

gethmmalignment(..., 'ToFile', ToFileValue)
gethmmalignment(..., 'Type', TypeValue)

Arguments
PFAMKey Unique identifier for a sequence record. Enter a

unique combination of letters and numbers.

ToFile Property to specify the location and filename for saving
data. Enter either a filename, or a path and filename
supported by your system (ASCII text file).

Type Property to select the set of alignments returned.
Enter either 'seed' or 'full'.

Description AlignData = gethmmalignment('PFAMKey',
'PropertyName',PropertyValue...) retrieves multiple
aligned sequences from a profile hidden Markov model stored in the
PFAM database and returns a MATLAB structure containing the
following fields:

Header
Sequence

gethmmalignment(..., 'ToFile', ToFileValue) saves the data
returned from the PFAM database to a file. Read a FASTA formatted
file with PFAM data back into MATLAB using the function fastaread.

gethmmalignment(..., 'Type', TypeValue) returns only the
alignments used to generate the HMM model if Type='seed', and if

2-130

gethmmalignment

Type='full', returns all alignments that fit the model. Default is
'full'.

Examples Retrieve a multiple alignment of the sequences used to train the HMM
profile model for global alignment to the 7 transmembrane receptor
protein in the secretin family (PFAMKey = PF00002).

pfamalign = gethmmalignment(2,'Type','seed')

or

pfamalign = gethmmalignment('PF00002','Type','seed')

See Also Bioinformatics Toolbox function fastaread, gethmmprof, gethmmtree,
pfamhmmread, multialignread

2-131

gethmmprof

Purpose Retrieve profile hidden Markov models from the PFAM database

Syntax Model = gethmmprof('AccessionNumber',
'PropertyName', PropertyValue...)

gethmmprof(..., 'ToFile', ToFileValue)
gethmmprof(..., 'Mode', ModeValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter a

unique combination of letters and numbers.

ToFile Property to specify the location and filename for
saving data. Enter either a filename or a path
and filename supported by your system (ASCII
text file).

Mode Property to select returning the global or local
alignment mode. Enter either 'ls' for the global
alignment mode or 'fs' for the local alignment
mode. Default value is 'ls'.

Description Model = gethmmprof('AccessionNumber',
'PropertyName',PropertyValue...) searches for the
PFAM family accession number in the PFAM database and returns a
MATLAB structure containing the following fields:

Name
PfamAccessionNumber
ModelDescription
ModelLength
Alphabet
MatchEmission
InsertEmission
NullEmission
BeginX
MatchX

2-132

gethmmprof

InsertX
DeleteX
FlankingInsertX

gethmmprof(..., 'ToFile', ToFileValue) saves data returned from
the PFAM database in a file (ToFileValue). Read an hmmprof formatted
file back into MATLAB using the function pfamhmmread.

gethmmprof(..., 'Mode', ModeValue) selects either the global
alignment model or the local alignment model.

Examples Retrieve a HMM profile model for global alignment to the
7-transmembrane receptor protein in the secretin family. (PFAM key
= PF00002)

hmmmodel = gethmmprof(2)

or

hmmmodel = gethmmprof('PF00002')

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
pfamhmmread, showhmmprof, gethmmalignment

2-133

gethmmtree

Purpose Get phylogenetic tree data from PFAM database

Syntax Tree = gethmmtree(AccessionNumber)

Tree = gethmmtree(...,'ToFile',ToFileValue)
Tree = gethmmtree(...,'Type', TypeValue)

Arguments
AccessionNumber Accession number in the PFAM database.

ToFile Property to specify the location and filename for
saving data. Enter either a filename or a path
and filename supported by your system (ASCII
text file).

Type Property to control which alignments are included
in the tree. Enter either 'seed' or 'full'. The
default value is 'full'.

Description Tree = gethmmtree(AccessionNumber) searches for the PFAM family
accession number in the PFAM database and returns an object (Tree)
containing a phylogenetic tree representative of the protein family.

Tree = gethmmtree(...,'ToFile', ToFileValue) saves the data
returned from the PFAM database in the file ToFileValue.

Tree = gethmmtree(...,'Type', TypeValue), when Type is 'seed',
returns a tree with only the alignments used to generate the HMM
model. When Type is 'full', returns a tree with all of the alignments
that match the model.

Examples Retrieve a phylogenetic tree built from the multiple aligned sequences
used to train the HMM profile model for global alignment. The PFAM
accession number PF00002 is for the 7-transmembrane receptor protein
in the secretin family.

tree = gethmmtree(2, 'type', 'seed')
tree = gethmmtree('PF00002', 'type', 'seed')

2-134

gethmmtree

See Also Bioinformatics Toolbox functions gethmmalignment, phytreeread

2-135

getnewickstr (phytree)

Purpose Create Newick formatted string

Syntax getnewickstr(..., 'PropertyName', PropertyValue,...)
getnewickstr(..., 'Distances', DistancesValue)
getnewickstr(..., 'BranchNames', BranchNamesValue)

Arguments
Tree Phytree object created with the function

phytree.

DistancesValue Property to control including or excluding
distances in the output. Enter either true
(include distances) or false (exclude distances).
Default is true.

BranchNamesValue Property to control including or excluding
branch names in the output. Enter either true
(include branch names) or false (exclude branch
names). Default is false.

Description getnewickstr(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getnewickstr(..., 'Distances', DistancesValue), when
DistancesValue is false, excludes the distances from the output.

getnewickstr(..., 'BranchNames', BranchNamesValue), when
BranchNamesValue is true, includes the branch names in the output.

References Information about the Newick tree format.

http://evolution.genetics.washington.edu/phylip/newicktree.html

Examples 1 Create some random sequences.

seqs = int2nt(ceil(rand(10)*4));

2 Calculate pairwise distances.

2-136

getnewickstr (phytree)

dist = seqpdist(seqs,'alpha','nt');

3 Construct a phylogenetic tree.

tree = seqlinkage(dist);

4 Get the Newick string.

str = getnewickstr(tree)

See Also Bioinformatics Toolbox functions phytreeread, phytreetool,
phytreewrite, seqlinkage, and phytree object methods get, getbyname,
getcanonical, phytree.

2-137

getnodesbyid (biograph)

Purpose Get handles to nodes

Syntax NodesHandles = getnodesbyid(BGobj, NodeIDs)

Arguments
BGobj Biograph object.

NodeIDs Enter a cell string of node identifications.

Description NodesHandles = getnodesbyid(BGobj, NodeIDs) gets the node
handles for the specified nodes (NodeIDs).

Example 1 Create a biograph object.

species = {'Homosapiens','Pan','Gorilla','Pongo','Baboon',...
'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);
bg = biograph(cm, species)

2 Find the handles to members of the Cercopithecidae family and
members of the Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};
Hominidae = {'Homosapiens','Pan','Gorilla','Pongo'};
CercopithecidaeNodes = getnodesbyid(bg,Cercopithecidae);
HominidaeNodes = getnodesbyid(bg,Hominidae);

3 Color the families differently and draw a graph.

See Also Bioinformatics Toolbox methods for the biograph object, biograph,
dolayout, getancestors, getdescendants, getedgesbynodeid,
getrelatives, view

MATLAB functions get, set

2-138

getpdb

Purpose Retrieve protein structure data from PDB database

Syntax Data = getpdb('PDBid',
'PropertyName', PropertyValue...)

getpdb(..., 'ToFile', ToFileValue)
getpdb(..., 'MirrorSite', MirrorSiteValue)

Arguments
PDBid Unique identifier for a protein structure record.

Each structure in the PDB is represented by a
4-character alphanumeric identifier.

For example, 4hhb is the identification code for
hemoglobin.

ToFile Property to specify the location and filename for
saving data. Enter either a filename or a path and
filename supported by your system (ASCII text file).

MirrorSite Property to select Web site. Enter either
http://rutgers.rcsb.org/pdb to use the
Rutgers University Web site, or enter
http://nist.rcsb.org/pdb for the National
Institute of Standards and Technology site.

Description getpdb retrieves sequence information from the Protein Data Bank.
This database contains 3-D biological macromolecular structure data.

Data = getpdb('PDBid', 'PropertyName',PropertyValue...)
searches for the ID in the PDB database and returns a MATLAB
structure containing the following fields:

Header
Title
Compound
Source
Keywords

2-139

getpdb

ExperimentData
Authors
Journal
Remark1
Remark2
Remark3
Sequence
HeterogenName
HeterogenSynonym
Formula
Site
Atom
RevisionDate
Superseded
Remark4
Remark5
Heterogen
Helix
Turn
Cryst1
OriginX
Scale
Terminal
HeterogenAtom
Connectivity

getpdb(..., 'ToFile', ToFileValue) saves the data returned from
the database to a file. Read a PDB formatted file back into MATLAB
using the function pdbread.

getpdb(...,'MirrorSite', MirrorSiteValue) allows you to choose
a mirror site for the PDB database. The default site is the San
Diego Supercomputer Center, http://www.rcsb.org/pdb. See
http://www.rcsb.org/pdb/mirrors.html for a full list of PDB mirror
sites.

2-140

getpdb

Examples Retrieve the structure information for the electron transport (heme
protein) with PDB ID 5CYT.

pdbstruct = getpdb('5CYT')

See Also Bioinformatics Toolbox functions getembl, getgenbank, getgenpept,
getpir, pdbdistplot, pdbplot, pdbread

2-141

getpir

Purpose Retrieve sequence data from PIR-PSD database

Syntax Data = getpir('AccessionNumber',
'PropertyName', PropertyValue...)

getpir(..., 'ToFile', ToFileValue)
getpir(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a unique combination of letters and numbers.

ToFile Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system.

SequenceOnly Property to control getting the sequence only.
Enter either true or false.

Description Data = getpir('AccessionNumber',
'PropertyName',PropertyValue...) searches for the
accession number in the PIR-PSD database, and returns a MATLAB
structure containing the following fields:

Entry
EntryType
Title
Organism
Date
Accessions
Reference
Genetics
Classification
Keywords
Feature
Summary
Sequence

2-142

getpir

getpir(..., 'ToFile', ToFileValue) saves the data retrieved from
the PIR-PSD database in a file. Read a PIR-PSD formatted file back
into MATLAB using the function pirread.

getpir(..., 'SequenceOnly', SequenceOnlyValue) returns only the
sequence information for the protein as a string if SequenceOnly is true.

The Protein Sequence Database (PIR-PSD) is maintained by the
Protein Information Resource (PIR) division of the National Biomedical
Research Foundation (NBRF), which is affiliated with Georgetown
University Medical Center.

Examples Return a structure, pirdata, that holds the result of a query into the
PIR-PSD database using 'cchu' as the search string.

pirdata = getpir('cchu')

pirdata =
Entry: 'CCHU'

EntryType: 'complete'
Title: 'cytochrome c [validated] - human'

Organism: [1x1 struct]
Date: [1x1 struct]

Accessions: 'A31764; A05676; I55192; A00001'
Reference: {[1x1 struct] [1x1 struct] [1x1 struct]

[1x1 struct]}
Genetics: {[1x1 struct]}

Classification: [1x1 struct]
Keywords: [1x157 char]
Feature: {1x5 cell}
Summary: [1x1 struct]

Sequence: [1x105 char]

Return a string, pirdata, that holds the sequence information for the
query 'cchu' in the PIR-PSD database.

pirseq = getpir('cchu','SequenceOnly',true)

2-143

getpir

Return a structure, pirdata, that holds the result of a query into the
PIR database using 'cchu' as the search string. It also creates a text
file, cchu.pir, in the current folder that holds the data retrieved from
the PIR database. Note that the entire data retrieved from the database
is stored in ToFileValue even if SequenceOnly is true.

pirdata = getpir('cchu', 'ToFile','cchu.pir')

See Also Bioinformatics Toolbox functions getembl, getgenbank, getgenpept,
getpdb, pirread

2-144

getrelatives (biograph)

Purpose Find relatives in a biograph object

Syntax Nodes = getrelatives(BiographNode)
Nodes = getrelatives(BiographNode, NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive
integer.

Description Nodes = getrelatives(BiographNode) finds all the direct relatives
for a given node (BiographNode).

Nodes = getrelatives(BiographNode, NumGenerations) finds the
direct relatives for a given node (BiographNode) up to a specified
number of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find all nodes interacting with node 1.

intNodes = getrelatives(bg.nodes(1));
set(intNodes,'Color',[.7 .7 1]);
bg.view;

See Also Bioinformatics Toolbox methods for the biograph object, biograph,
dolayout, getancestors, getdescendants, getedgesbynodeid,
getnodesbyid, view

MATLAB functions get, set

2-145

gonnet

Purpose Return a Gonnet scoring matrix

Syntax gonnet

Description The Gonnet matrix is the recommended mutation matrix for initially
aligning protein sequences. Matrix elements are ten times the
logarithmic of the probability that the residues are aligned divided by
the probability that the residues are aligned by chance, and then matrix
elements are normalized to 250 PAM units.

Expected score = -0.6152, Entropy = 1.6845 bits Lowest score = -8,
Highest score = 14.2

Order:

A R N D C Q E G H I L K M F P S T W Y V B Z X *

References [1] Gaston H, Gonnet M, Cohen A, Benner S; “Exhaustive matching
of the entire protein sequence database” in Science; Vol. 256, pp.
1443-1445; June 1992.

See Also Bioinformatics Toolbox functions blosum,dayhoff, pam

2-146

gprread

Purpose Read microarray data from a GenePix Results (GPR) file

Syntax GPRData = gprread('File',
'PropertyName', PropertyValue...)

gprread(..., 'CleanColNames', CleanColNameValue)

Arguments
File GenePix Results formatted file (file extension GPR).

Enter a filename or a path and filename.

CleanColNames Property to control creating column names that
MATLAB can use as variable names.

Description GPRData = gprread('File', 'PropertyName', PropertyValue...)
reads GenePix results data from File and creates a MATLAB structure
GPRData with the following fields:

Header
Data
Blocks
Columns
Rows
Names
IDs
ColumnNames
Indices
Shape

gprread(..., 'CleanColNames', CleanColNamesValue). A GPR file
may contain column names with spaces and some characters that
MATLAB cannot use in MATLAB variable names. If CleanColNames
is true, gprread returns ColumnNames that are valid MATLAB
variable names and names that you can use in functions. By default,
CleanColNames is false and ColumnNames may contain characters that
are invalid for MATLAB variable names.

2-147

gprread

The field Indices of the structure contains MATLAB indices that can be
used for plotting heat maps of the data.

For more details on the GPR format, see

http://www.axon.com/GN_GenePix_File_Formats.html

For a list of supported file format versions, see

http://www.axon.com/gn_GPR_Format_History.html

Sample data can be found at the following Web address. Save this file to
your working directory to run the example below.

http://www.axon.com/genomics/Demo.gpr

GenePix is a registered trademark of Axon Instruments, Inc.

Examples % Read in a sample GPR file and plot the median
% foreground intensity for the 635nm channel.
gprStruct = gprread('mouse_alpd.gpr')
maimage(gprStruct,'F635 Median');

% Alternatively, create a similar plot using
% more basic graphics commands.

f635Col = find(strcmp(gprStruct.ColumnNames,'F635 Median'));
F635Median = gprStruct.Data(:,f635Col);
imagesc(F635Median(gprStruct.Indices));

colormap bone
colorbar

See Also Bioinformatics Toolbox functions affyread, galread, geosoftread,
imageneread, sptread

2-148

hmmprofalign

Purpose Align a query sequence to a profile using hidden Markov model based
alignment

Syntax Alignment = hmmprofalign(Model, Seq,
’PropertyName', PropertyValue...)

[Alignment, Score] = hmmprofalign(Model, Seq)

hmmprofalign(..., 'ShowScore', ShowScoreValue)
hmmprofalign(..., 'Flanks', FlanksValue)
hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue)
hmmprofalign(..., 'ScoreNullTransitions',
ScoreNullTransValue)

Arguments
Model Hidden Markov model created with the function

hmmprofstruc.

Seq Amino acid or nucleotide sequence. You can also
enter a structure with the field Sequence.

ShowScore Property to control displaying the scoring space
and the winning path. Enter either true or
falase. The default value is false.

Flanks Property to control including the symbols
generated by the FLANKING INSERT states in
the output sequence. Enter either true or false.
The default value is false.

ScoreFlanks Property to control including the transition
probabilities for the flanking states in the raw
score. Enter either true or false. Default value
is false.

ScoreNullTrans Property to control adjusting the raw score using
the null model for transitions (Model.NullX).
Enter either true or false. The default value
is false.

2-149

hmmprofalign

Description Alignment = hmmprofalign(Model, Seq, 'PropertyName',
PropertyValue...) returns the score for the optimal alignment of the
query amino acid or nucleotide sequence (Seq) to the profile hidden
Markov model (Model). Scores are computed using log-odd ratios for
emission probabilities and log probabilities for state transitions.

[Alignment, Score] = hmmprofalign(Model, Seq) returns a string
showing the optimal profile alignment.

Uppercase letters and dashes correspond to MATCH and DELETE
states respectively (the combined count is equal to the number of states
in the model). Lowercase letters are emitted by the INSERT states. For
more information about the HMM profile, see hmmprofstruct.

[Score, Alignment, Prointer] = hmmprofalign(Model, Seq)
returns a vector of the same length as the profile model with indices
pointing to the respective symbols of the query sequence. Null pointers
(NaN) mean that such states did not emit a symbol in the aligned
sequence because they represent model jumps from the BEGIN state
of a MATCH state, model jumps from the from a MATCH state to the
END state, or because the alignment passed through DELETE states.

hmmprofalign(..., 'ShowScore', ShowScoreValue),when ShowScore
is true, displays the scoring space and the winning path.

hmmprofalign(..., 'Flanks', FlanksValue), when Flanks is true,
includes the symbols generated by the FLANKING INSERT states in
the output sequence.

hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue), when
ScoreFlanks is true, includes the transition probabilities for the
flanking states in the raw score.

hmmprofalign(..., 'ScoreNullTransitions',
ScoreNullTransitionValue), when ScoreNullTransitions is true,
adjusts the raw score using the null model for transitions (Model.NullX).

2-150

hmmprofalign

Note Multiple alignment is not supported in this implementation. All
the Model.LoopX probabilities are ignored.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
load('hmm_model_examples','sequences') % load a sequence example
SCCR_RABIT=sequences(2).Sequence;
[a,s]=hmmprofalign(model_7tm_2,SCCR_RABIT,'showscore',true)

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofestimate,
hmmprofgenerate, hmmprofmerge, hmmprofstruct, pfamhmmread,
showhmmprof, multialign, profalign

2-151

hmmprofestimate

Purpose Estimate profile HMM parameters using pseudocounts

Syntax hmmprofestimate(Model, MultipleAlignment,
'PropertyName', PropertyValue...)

hmmprofestimate(..., 'A', AValue)
hmmprofestimate(..., 'Ax', AxValue)
hmmprofestimate(..., 'BE', BEValue)
hmmprofestimate(..., 'BDx', BDxValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

MultipleAlignment Array of sequences. Sequences can also be a
structured array with the aligned sequences
in a field Aligned or Sequences, and the
optional names in a field Header or Name.

A Property to set the pseudocount weight A.
Default value is 20.

Ax Property to set the pseudocount weight Ax.
Default value is 20.

BE Property to set the background symbol
emission probabilities. Default values are
taken from Model.NullEmission.

BMx Property to set the background transition
probabilities from any MATCH state ([M->M
M->I M->D]). Default values are taken from
hmmprofstruct.

BDx Property to set the background transition
probabilities from any DELETE state
([D->M D->D]). Default values are taken from
hmmprofstruct.

2-152

hmmprofestimate

Description hmmprofestimate(Model, MultipleAlignment, 'PropertyName',
PropertyValue...) returns a structure with the fields containing the
updated estimated parameters of a profile HMM. Symbol emission and
state transition probabilities are estimated using the real counts and
weighted pseudocounts obtained with the background probabilities.
Default weight is A=20, the default background symbol emission for
match and insert states is taken from Model.NullEmission, and the
default background transition probabilities are the same as default
transition probabilities returned by hmmprofstruct.

Model Construction: Multiple aligned sequences should contain
uppercase letters and dashes indicating the model MATCH and
DELETE states agreeing with Model.ModelLength. If model state
annotation is missing, but MultipleAlignment is space aligned, then a
"maximum entropy" criteria is used to select Model.ModelLength states.

Note: Insert and flank insert transition probabilities are not estimated,
but can be modified afterwards using hmmprofstruct.

hmmprofestimate(..., 'A', AValue) sets the pseudocount weight A
= Avalue when estimating the symbol emission probabilities. Default
value is 20.

hmmprofestimate(...,'Ax', AxValue) sets the pseudocount weight
Ax = Axvalue when estimating the transition probabilities. Default
value is 20.

hmmprofestimate(...,'BE', BEValue) sets the background
symbol emission probabilities. Default values are taken from
Model.NullEmission.

hmmprofestimate(...,'BMx', BMxValue) sets the background
transition probabilities from any MATCH state ([M->M M->I M->D]).
Default values are taken from hmmprofstruct.

hmmprofestimate(..., 'BDx', BDxValue) sets the background
transition probabilities from any DELETE state ([D->M D->D]). Default
values are taken from hmmprofstruct.

2-153

hmmprofestimate

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
showhmmprof

2-154

hmmprofgenerate

Purpose Generate a random sequence drawn from the profile HMM

Syntax Sequence = hmmprofgenerate(Model,
'PropertyName', PropertyValue....)

[Sequence, Profptr] = hmmprofgenerage(Model)

hmmprofgenerate(..., 'Align', AlignValue)
hmmprofgenerate(..., 'Flanks', FlanksValue)
hmmprofgenerate(..., 'Signature', SignatureValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

Align Property to control using uppercase letters
for matches and lowercase letters for inserted
letters. Enter either true or false. The default
value is false.

Flanks Property to control including the symbols
generated by the FLANKING INSERT states
in the output sequence. Enter either true or
false. The default value is false.

Signature Property to control returning the most likely
path and symbols. Enter either true or false.
Default value is false.

Description Seq = hmmprofgenerate(Model, 'PropertyName',
PropertyValue...) returns a string (Seq) showing a sequence of
amino acids or nucleotides drawn from the profile (Model). The length,
alphabet, and probabilities of the Model are stored in a structure. For
move information about this structure, see hmmprofstruct.

[Sequence, Profptr] = hmmprofgenerage(Model) returns a vector of
the same length as the profile model pointing to the respective states
in the output sequence. Null pointers (0) mean that such states do not
exist in the output sequence, either because they are never touched (i.e.,

2-155

hmmprofgenerate

jumps from the BEGIN state to MATCH states or from MATCH states
to the END state), or because DELETE states are not in the output
sequence (not aligned output; see below).

hmmprofgenerate(..., 'Align', AlignValue) if Align is true, the
output sequence is aligned to the model as follows: uppercase letters
and dashes correspond to MATCH and DELETE states respectively
(the combined count is equal to the number of states in the model).
Lowercase letters are emitted by the INSERT or FLANKING INSERT
states. If Align is false, the output is a sequence of uppercase symbols.
The default value is true.

hmmprofgenerate(..., 'Flanks', FlanksValue) if Flanks is true,
the output sequence includes the symbols generated by the FLANKING
INSERT states. The default value is false.

hmmprofgenerate(..., 'Signature', SignatureValue) if Signature
is true, returns the most likely path and symbols. The default value
is false.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
rand_sequence = hmmprofgenerate(model_7tm_2)

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
showhmmprof

2-156

hmmprofmerge

Purpose Concatenate the prealigned strings of several sequences to a profile
HMM

Syntax A = hmmprofmerge(Sequences)
hmmprofmerge(Sequences, Names)
hmmprofmerge(Sequences, Names, Scores)

Arguments
Sequences Array of sequences. Sequences can also be a

structured array with the aligned sequences in a field
Aligned or Sequences, and the optional names in a
field Header or Name.

Names Names for the sequences. Enter a vector of names.

Scores Pairwise alignment scores from the function
hmmprofalign. Enter a vector of values with the same
length as the number of sequences in Sequences.

Description hmmprofmerge(Sequences) displays a set of prealigned sequences to a
HMM model profile. The output is aligned corresponding to the HMM
states.

• Match states — Uppercase letters

• Insert states — Lowercase letters or asterisks (*)

• Delete states — Dashes

Periods (.) are added at positions corresponding to inserts in other
sequences. The input sequences must have the same number of profile
states, that is, the joint count of capital letters and dashes must be
the same.

hmmprofmerge(Sequences, Names) labels the sequences with Names.

hmmprofmerge(Sequences, Names, Scores) sorts the displayed
sequences using Scores.

2-157

hmmprofmerge

Examples load('hmm_model_examples','model_7tm_2') %load model
load('hmm_model_examples','sequences') %load sequences

for ind =1:length(sequences)
[scores(ind),sequences(ind).Aligned] =...

hmmprofalign(model_7tm_2,sequences(ind).Sequence);
end

hmmprofmerge(sequences, scores)

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct

2-158

hmmprofstruct

Purpose Create a profile HMM structure

Syntax Model = hmmprofstruct(Length)
Model = hmmprofstruct(Length, 'Field1', FieldValues1,...)
hmmprofstruct(Model, 'Field1', Field1Values1,...)

Arguments
Length Number of match states in the model.

Model Hidden Markov model created with the function
hmmprofstruc.

Field1 Field name in the structure Model. Enter a name
from the table below.

Description Model = hmmprofstruct(Length) returns a structure with the fields
containing the required parameters of a profile HMM. Length specifies
the number of match states in the model. All other mandatory model
parameters are initialized to the default values.

Model = hmmprofstruct(Length, 'Field1', FieldValues1, ...)
creates a profile HMM using the specified fields and parameters. All
other mandatory model parameters are initialized to default values.

hmmprofstruct(Model, 'Field1', Field1Values1, ...) returns the
updated profile HMM with the specified fields and parameters. All other
mandatory model parameters are taken from the reference MODEL.

HMM Profile Structure Format

Model parameters fields (mandatory). All probability values are in the
[0 1] range.

Field Name Description

ModelLength Length of the profile (number of MATCH states)

Alphabet 'AA' or 'NT'. Default is 'AA’.

2-159

hmmprofstruct

MatchEmission Symbol emission probabilities in the MATCH
states.

Size is [ModelLength x AlphaLength]. Defaults
to uniform distributions. May accept a structure
with residue counts (see aacount or basecount).

InsertEmission Symbol emission probabilities in the INSERT
state.

Size is [ModelLength x AlphaLength]. Defaults
to uniform distributions. May accept a structure
with residue counts (see aacount or basecount).

NullEmission Symbol emission probabilities in the MATCH
and INSERT states for the NULL model. NULL
model, size is [1 x AlphaLength]. Defaults to
a uniform distribution. May accept a structure
with residue counts (see aacount or basecount).
The NULL model is used to compute the log-odds
ratio at every state and avoid overflow when
propagating the probabilities through the model.

BeginX BEGIN state transition probabilities.

Format is

[B->D1 B->M1 B->M2 B->M3 B->Mend]

Notes:

sum(S.BeginX) = 1

For fragment profiles

sum(S.BeginX(3:end)) = 0

Default is [0.01 0.99 0 0 ... 0].

2-160

hmmprofstruct

MatchX MATCH state transition probabilities

Format is

[M1->M2 M2->M3 ... M[end-1]->Mend;
M1->I1 M2->I2 ... M[end-1]->I[end-1];
M1->D2 M2->D3 ... M[end-1]->Dend;
M1->E M2->E ... M[end-1]->E]

Notes:

sum(S.MatchX) = [1 1 ... 1]

For fragment profiles

sum(S.MatchX(4,:)) = 0

Default is repmat([0.998 0.001 0.001
0],profLength-1,1).

InsertX INSERT state transition probabilities

Format is

[I1->M2 I2->M3 ... I[end-1]->Mend;
[I1->I1 I2->I2 ... I[end-1]->I[end-1]]

Note:

sum(S.InsertX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

2-161

hmmprofstruct

DeleteX DELETE state transition probabilities. The
format is

[D1->M2 D2->M3 ... D[end-1]->Mend ;
[D1->D2 D2->D3 ... D[end-1]->Dend]

Note: sum(S.DeleteX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

FlankingInsertX Flanking insert states (N and C) used for LOCAL
profile alignment. The format is

[N->B C->T ;
[N->N C->C]

Note: sum(S.FlankingInsertsX) = [1 1]

To force global alignment use

S.FlankingInsertsX = [1 1; 0 0]

Default is [0.01 0.01; 0.99 0.99].

LoopX Loop states transition probabilities used for
multiple hits alignment. The format is

[E->C J->B ;
E->J J->J]

Note: sum(S.LoopX) = [1 1]

Default is [0.5 0.01; 0.5 0.99]

NullX Null transition probabilities used to provide scores
with log-odds values also for state transitions.
The format is

[G->F ; G->G]

Note: sum(S.NullX) = 1

2-162

hmmprofstruct

Default is [0.01; 0.99]

Annotation fields (optional)

Name Model Name

IDNumber Identification Number

Description Short description of the model

A profile Markov model is a common statistical tool for modeling
structured sequences composed of symbols . These symbols include
randomness in both the output (emission of symbols) and the state
transitions of the process. Markov models are generally represented
by state diagrams.

The figure shown below is a state diagram for a HMM profile of length 4.
Insert, match, and delete states are in the regular part (middle section).

• Match state means that the target sequence is aligned to the profile
at the specific location,

• Delete state represents a gap or symbol absence in the target
sequence (also know as a silent state because it does not emit any
symbol),

• Insert state represents the excess of one or more symbols in the
target sequence that are not included in the profile.

Flanking states (S, N, B, E, C, T) are used for proper modeling of the
ends of the sequence, either for global, local or fragment alignment of
the profile. S, N, E, and T are silent while N and C are used to insert
symbols at the flanks.

2-163

hmmprofstruct

Examples hmmprofstruct(100,'Alphabet','AA')

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofmerge, pfamhmmread,
showhmmprof, aacount, basecount

2-164

imageneread

Purpose Read microarray data from an ImaGene Results file

Syntax GPRData = gprread('File',
'PropertyName', PropertyValue...)

gprread(..., 'CleanColNames', CleanColNamesValue)

Arguments
File ImaGene Results formatted file Enter a filename

or a path and filename.

CleanColName Property to control creating column names that
MATLAB can use as variable names.

Description imagedata = imagegeenread(File, 'PropertyName',
PropertyValue...) reads ImaGene results data from File and creates
a MATLAB structure imagedata containing the following fields:

HeaderAA
Data
Blocks
Rows
Columns
Fields
IDs
ColumnNames
Indices
Shape

imageneread(..., 'CleanColNames', CleanColNamesValue). An
ImaGene file may contain column names with spaces and some
characters that MATLAB cannot use in MATLAB variable names. If
CleanColNames is true, imagene returns ColumnNames that are valid
MATLAB variable names and names that you can use in functions.
By default, CleanColNames is false and ColumnNames may contain
characters that are not valid for MATLAB variable names.

2-165

imageneread

The field Indices of the structure contains MATLAB indices that you
can use for plotting heat maps of the data with the function image or
imagesc.

For more details on the ImaGene format and example data, see the
ImaGene User Manual.

ImaGene is a registered trademark of BioDiscovery, Inc.

Examples % Read in a sample ImaGene file and plot the Signal Mean
cy3Data = imageneread('cy3.txt');
maimage(cy3Data,'Signal Mean');

% Read in the Cy5 channel and create a loglog plot of Signal Median
cy5Data = imageneread('cy5.txt');
sigMedianCol = find(strcmp('Signal Median',cy3Data.ColumnNames));
cy3Median = cy3Data.Data(:,sigMedianCol);
cy5Median = cy5Data.Data(:,sigMedianCol);
maloglog(cy3Median,cy5Median,'title','Signal Median');

See Also The Bioinformatics Toolbox functions gprread, maboxplot, maimage,
sptread

2-166

int2aa

Purpose Convert amino acid sequence from integer to letter representation

Syntax SeqChar = int2aa(SeqInt,
'PropertyName', PropertyValue...)

int2aa(..., 'Case', CaseValue)

Arguments
SeqInt Amino acid sequence represented with integers. Enter a

vector of integers from the table Mapping Amino Acid
Integers to Letters below. The array does not have to be
of type integer, but it does have to contain only integer
numbers. Integers are arbitrarily assigned to IUB/IUPAC
letters.

Case Property to select the case of the returned character
string. Enter either 'upper' or 'lower'. Default is
'upper'.

Mapping Amino Acid Integers to Letters

Amino Acid Code
Amino
Acid Code Amino Acid

Alanine A1 Isoleucine I10 Tyrosine Y19

Arginine R2 Leucine L11 Valine V20

Asparagine N3 Lysine K12 Aspartic
acid or
Asparagine

B21

Aspartic acid
(aspartate)

D4 Methionine M13 Glutamic
acid or
Glutamine

Z22

Cystine C5 PhenylalanineF14 Any amino
acid

X23

2-167

int2aa

Amino Acid Code
Amino
Acid Code Amino Acid

Glutamine Q6 Proline P15 Translation
stop

*24

Glutamic
acid
(glutamate)

E7 Serine S16 Gap of
indeterminate
length

- 25

Glycine G8 Threonine T17 Unknown or
any integer
not in table

?0

Histidine H9 Tryptophan W18

Description SeqChar = int2aa(SeqInt, 'PropertyName', PropertyValue...)
converts a 1-by-N array of integers to a character string using the table
Mapping Amino Acid Interger sot Letters above.

int2aa(..., 'Case', CaseValue) sets the output case of the
nucleotide string. Default is uppercase.

Examples s = int2aa([13 1 17 11 1 21])

s =
MATLAB

See Also Bioinformatics Toolbox functions aa2int, aminolookup, int2nt, nt2int

2-168

int2nt

Purpose Convert nucleotide sequence from integer to letter representation

Syntax SeqChar = int2nt(SeqInt,
'PropertyName', PropertyValue...)

int2nt(..., 'Alphabet', AlphabetValue)
int2nt(..., 'Unknown', UnknownValue)
int2nt(..., 'Case', CaseValue)

Arguments
SeqInt Nucleotide sequence represented by integers. Enter a

vector of integers from the table Mapping Nucleotide
Integers to Letters below. The array does not have
to be of type integer, but it does have to contain only
integer numbers. Integers are arbitrarily assigned to
IUB/IUPAC letters.

Alphabet Property to select the nucleotide alphabet. Enter
either 'DNA' or 'RNA'.

Unknown Property to select the integer value for the unknown
character. Enter a character to map integers 16 or
greater to an unknown character. The character must
not be one of the nucleotide characters A, T, C, G or the
ambiguous nucleotide characters N, R, Y, K, M, S, W, B,
D, H, or V. The default character is *.

Case Property to select the letter case for the nucleotide
sequence. Enter either 'upper' or 'lower'. The
default value is 'lower'.

2-169

int2nt

Mapping Nucleotide Integers to Letters

Base Code Base Code Base Code

Adenosine 1—A T, C
(pyrimidine)

6—Y A, T, G (not
C)

12—D

Cytidine 2—C G, T (keto) 7—K A, T, C (not
G)

13—H

Guanine 3—G A, C (amino) 8—M A, G, C (not
T)

14—V

Thymidine 4—T G, C (strong) 9—S A, T, G, C (any) 15—N

Uridine (if
’Alphabet’ =
’RNA’

4—U A, T (weak) 10—W Gap of
indeterminate
length

16 — -

A, G
(purine)

5—R T, G, C (not
A)

11—B Unknown
(default)

0 and
17—*

Description int2nt(SeqNT, 'PropertyName', PropertyValue...) converts a
1-by-N array of integers to a character string using the table Mapping
Nucleotide Letters to Integers above.

int2nt(..., 'Alphabet', AlphabetValue) defines the nucleotide
alphabet to use. The default value is 'DNA', which uses the symbols A,
T, C, and G. If Alphabet is set to 'RNA', the symbols A, C, U, G are used
instead.

int2nt(..., 'Unknown', UnknownValue) defines the character to
represent an unknown nucleotide base. The default character is '*'.

int2nt(..., 'Case', CaseValue) sets the output case of the
nucleotide string. The default is uppercase.

2-170

int2nt

Examples Enter a sequence of integers as a MATLAB vector (space or
comma-separated list with square brackets).

s = int2nt([1 2 4 3 2 4 1 3 2])

s =
ACTGCTAGC

Define a symbol for unknown numbers 16 and greater.

si = [1 2 4 20 2 4 40 3 2];
s = int2nt(si, 'unknown', '#')

s =
ACT#CT#GC

See Also Bioinformatics Toolbox function aa2int,, int2aa, nt2int

2-171

isoelectric

Purpose Estimate isoelectric point for amino acid sequence

Syntax pI = isoelectric(SeqAA,)
'PropertyName', PropertyValue...)

[pI Charge] = isoelectric(SeqAA)

isoelectric(..., 'PKVals', PKValsValue)
isoelectric(..., 'Charge', ChargeValue)
isoelectric(..., 'Chart', ChartValue)

Arguments
SeqAA Amino acid sequence. Enter a character string or

a vector of integers from the table Mapping Amino
Acid Letters to Integers on page 2-2. Examples:
'ARN' or [1 2 3].

PKVals Property to provide alternative pK values.

Charge Property to select a specific pH for estimating charge.
Enter a number between 0 and 14. The default value
is 7.2.

Chart Property to control plotting a graph of charge versus
pH. Enter true or false.

Description isoelectric estimates the isoelectric point (the pH at which the protein
has a net charge of zero) for an amino acid sequence and it estimates
the charge for a given pH (default is pH 7.2). The estimates skewed by
the underlying assumptions that all amino acids are fully exposed to
the solvent, that neighboring peptides have no influence on the pK of
any given amino acid, and that the constitutive amino acids, as well as
the N- and C-termini, are unmodified. Cysteine residues participating
in disulfide bridges also affect the true pI and are not considered here.

2-172

isoelectric

By default, isoelectric uses the EMBOSS amino acid pK table, or you
can substitute other values using the property PKVals.

• If the sequence contains ambiguous amino acid characters (b z * –),
isoelectric ignores the characters and displays a warning message.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence.

• If the sequence contains undefined amino acid characters (i j o) ,
isoelectric ignores the characters and displays a warning message.

Warning: Sequence contains unknown characters. These will
be ignored.

pI = isoelectric(Seq_AA, 'PropertyName', PropertyValue...)
returns the isoelectric constant (pI) for an amino acid sequence.

isoelectric(..., 'PKVals', PKValsValue) uses the alternative pK
table stored in the text file PKValValues. For an example of a pK text
file, see the file Emboss.pK.

N_term 8.6
K 10.8
R 12.5
H 6.5
D 3.9
E 4.1
C 8.5
Y 10.1
C_term 3.6

isoelectric(..., 'Charge', ChargeValue) returns the estimated
charge of a sequence for a given pH (ChargeValue).

isoelectric(..., 'Chart', ChartValue) when Chart is true, returns
a graph plotting the charge of the protein versus the pH of the solvent.

2-173

isoelectric

Example % Get a sequence from PDB and estimate the isoelectric point.
pdbSeq = getpdb('1CIV', 'SequenceOnly', true)
% then estimate its isoelectric point
isoelectric(pdbSeq)

% plot the charge against the pH for a short polypeptide sequence
isoelectric('PQGGGGWGQPHGGGWGQPHGGGGWGQGGSHSQG', 'CHART', true)

% Get the Rh blood group D antigen from NCBI and calculates
% its charge at pH 7.3 (typical blood pH)
gpSeq = getgenpept('AAB39602')
[pI Charge] = isoelectric(gpSeq, 'Charge', 7.38)

See Also Bioinformatics functions aacount, msalign

2-174

jcampread

Purpose Read JCAMP-DX formatted files

Syntax JCAMPData = jcampread(File)

Description JCAMP-DX is a file format for infrared, NMR, and mass spectrometry
data from the Joint Committee on Atomic and Molecular Physical
Data (JCAMP). jcampread supports reading data from files saved with
Versions 4.24 and 5 of the JCAMP-DX format. For more details, see

http://www.jcamp.org/index.html

JCAMPData = jcampread(File)reads data from a JCAMP-DX formatted
file (File) and creates a MATLAB structure (JCAMPData) containing
the following fields:

Title
DataType
Origin
Owner
Blocks
Notes

The Blocks field of the structure is an array of structures corresponding
to each set of data in the file. These structures have the following fields:

XData
YData
XUnits
YUnits
Notes

File is a JCAMP-DX formatted file (ASCII text file). Enter a filename,
a path and filename, or a URL pointing to a file. File can also be
a MATLAB character array that contains the text of a JCAMP-DX
formatted file.

2-175

jcampread

Examples 1 Download test data in the file isa_ms1.dx from

http://www.jcamp.org/testdata.html/testdata.zip

2 Read a JCAMP-DX file (isas_ms1.dx) into MATLAB and plot the
mass spectrum.

jcampStruct = jcampread('isas_ms1.dx')
data = jcampStruct.Blocks(1);
stem(data.XData,data.YData, '.', 'MarkerEdgeColor','w');
title(jcampStruct.Title);
xlabel(data.XUnits);
ylabel(data.YUnits);

A figure window opens with the mass spectrum.

See Also Bioinformatics Toolbox functions mslowess, mssgolay, msviewer

2-176

joinseq

Purpose Join two sequences to produce the shortest supersequence

Syntax SeqNT3 = joinseq(SeqNT1, SeqNT2)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences.

Description joinseq(SeqNT1, SeqNT2) creates a new sequence that is the shortest
supersequence of Seq1 and Seq2. If there is no overlap between the
sequences, then SeqNT2 is concatenated to the end of SeqNT1. If the
length of the overlap is the same at both ends of the sequence, then
the overlap at the end of SeqNT1 and the start of SeqNT2 is used to join
the sequences.

If SeqNT1 is a subsequence of SeqNT2, then SeqNT2 is returned as the
shortest supersequence and vice versa.

Examples seq1 = 'ACGTAAA';
seq2 = 'AAATGCA';
joined = joinseq(seq1,seq2)

joined =
ACGTAAATGCA

See Also MATLAB functions cat, paren, strcat, strfind

2-177

knnclassify

Purpose Classify data using the nearest–neighbor method

Syntax Class = knnclassify(Sample, Training, Group)
Class = knnclassify(Sample, Training, Group, k)
Class = knnclassify(Sample, Training, Group, k, distance)
Class = knnclassify(Sample, Training, Group, k, distance, rule)

Description Class = knnclassify(Sample, Training, Group) classifies the rows
of the data matrix Sample into groups, based on the grouping of the rows
of Training. Sample and Training must be matrices with the same
number of columns. Group is a vector whose distinct values define the
grouping of the rows in Training. Each row of Training belongs to the
group whose value is the corresponding entry of Group. knnclassify
assigns each row of Sample to the group for the closest row of Training.
Group can be a numeric vector, a string array, or a cell array of strings.
Training and Group must have the same number of rows. knnclassify
treats NaNs or empty strings in Group as missing values, and ignores the
corresponding rows of Training. Class indicates which group each row
of Sample has been assigned to, and is of the same type as Group.

Class = knnclassify(Sample, Training, Group, k) enables you to
specify k, the number of nearest neighbors used in the classification.
The default is 1.

Class = knnclassify(Sample, Training, Group, k, distance)
enables you to specify the distance metric. The choices for distance are

'euclidean' Euclidean distance — the default

'cityblock' Sum of absolute differences

'cosine' One minus the cosine of the included angle between
points (treated as vectors)

'correlation' One minus the sample correlation between points
(treated as sequences of values)

'hamming' Percentage of bits that differ (only suitable for binary
data)

2-178

knnclassify

Class = knnclassify(Sample, Training, Group, k, distance,
rule) enables you to specify the rule used to decide how to classify the
sample. The choices for rule are

'nearest' Majority rule with nearest point tie-break — the
default

'random' Majority rule with random point tie-break

'consensus' Consensus rule

The default behavior is to use majority rule. That is, a sample point
is assigned to the class the majority of the k nearest neighbors are
from. Use 'consensus' to require a consensus, as opposed to majority
rule. When using the 'consensus' option, points where not all of the k
nearest neighbors are from the same class are not assigned to one of the
classes. Instead the output Class for these points is NaN for numerical
groups or '' for string named groups. When classifying to more than
two groups or when using an even value for k, it might be necessary to
break a tie in the number of nearest neighbors. Options are 'random',
which selects a random tiebreaker, and 'nearest', which uses the
nearest neighbor among the tied groups to break the tie. The default
behavior is majority rule, with nearest tie-break.

Examples Example 1

The following example classifies the rows of the matrix sample:

sample = [.9 .8;.1 .3;.2 .6]

sample =
0.9000 0.8000
0.1000 0.3000
0.2000 0.6000

training=[0 0;.5 .5;1 1]

training =
0 0

2-179

knnclassify

0.5000 0.5000
1.0000 1.0000

group = [1;2;3]

group =
1
2
3

class = knnclassify(sample, training, group)

class =
3
1
2

Row 1 of sample is closest to row 3 of Training, so class(1) = 3. Row
2 of sample is closest to row 1 of Training, so class(2) = 1. Row 3 of
sample is closest to row 2 of Training, so class(3) = 2.

Example 2

The following example classifies each row of the data in sample into one
of the two groups in training. The following commands create the
matrix training and the grouping variable group, and plot the rows
of training in two groups.

training = [mvnrnd([1 1], eye(2), 100); ...
mvnrnd([-1 -1], 2*eye(2), 100)];

group = [repmat(1,100,1); repmat(2,100,1)];
gscatter(training(:,1),training(:,2),group,'rb',+x');
legend('Training group 1', 'Training group 2');
hold on;

2-180

knnclassify

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4
Training group 1
Training group 2

The following commands create the matrix sample, classify its rows into
two groups, and plot the result.

sample = unifrnd(-5, 5, 100, 2);
% Classify the sample using the nearest neighbor classification
c = knnclassify(sample, training, group);
gscatter(sample(:,1),sample(:,2),c,'mc'); hold on;
legend('Training group 1','Training group 2', ...

'Data in group 1','Data in group 2');
hold off;

2-181

knnclassify

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training group 1
Training group 2
Data in group 1
Data in group 2

Example 3

The following example uses the same data as in Example 2, but classifies
the rows of sample using three nearest neighbors instead of one.

gscatter(training(:,1),training(:,2),group,'rb',+x');
hold on;
c3 = knnclassify(sample, training, group, 3);
gscatter(sample(:,1),sample(:,2),c3,'mc','o');
legend('Training group 1','Training group 2','Data in group 1','Data in g

2-182

knnclassify

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training group 1
Training group 2
Data in group 1
Data in group 2

If you compare this plot with the one in Example 2, you see that some of
the data points are classified differently using three nearest neighbors.

See Also Bioinformatics Toolbox functions ,knnimputeclassperf ,crossvalind
,svmclassify svmtrain

Statistical Toolbox functions classify

References [1] Mitchell, Tom,Machine Learning, McGraw-Hill, 1997.

2-183

knnimpute

Purpose Impute missing data using the nearest-neighbor method

Syntax knnimpute(Data)
knnimpute(Data, k)
knnimpute(..., 'distance', distfun)
knnimpute(..., 'distargs', args)
knnimpute(...,'weights',w)
knnimpute(...,'median',true)

Description knnimpute(Data)replaces NaNs in Data with the corresponding value
from the nearest-neighbor column. The nearest-neighbor column is
the closest column in Euclidean distance. If the corresponding value
from the nearest-neighbor column is also NaN, the next nearest column
is used.

knnimpute(Data, k)replaces NaNs in Data with a weighted mean of the
k nearest-neighbor columns. The weights are inversely proportional to
the distances from the neighboring columns.

knnimpute(..., 'distance', distfun) computes nearest-neighbor
columns using the distance metric distfun. The choices for distfun are

'euclidean' Euclidean distance — the default

'seuclidean' Standardized Euclidean distance — each coordinate
in the sum of squares is inversely weighted by the
sample variance of that coordinate.

'cityblock' City block distance

'mahalanobis' Mahalanobis distance

'minkowski' Minkowski distance with exponent 2

'cosine' One minus the cosine of the included angle

'correlation' One minus the sample correlation between
observations, treated as sequences of values

2-184

knnimpute

'hamming' Hamming distance — the percentage of coordinates
that differ

'jaccard' One minus the Jaccard coefficient — the percentage
of nonzero coordinates that differ

'chebychev' Chebychev distance (maximum coordinate difference)

function
handle

A handle to a distance function, specified using @, for
example @distfun

See pdist for more details.

knnimpute(..., 'distargs', args) passes the arguments args to the
function distfun. args can be a single value or a cell array of values.

knnimpute(...,'weights',w) enables you to specify the weights used
in the weighted mean calculation. w should be a vector of length k.

knnimpute(...,'median',true) uses the median of the k nearest
neighbors instead of the weighted mean.

Examples Example 1

A = [1 2 5;4 5 7;NaN -1 8;7 6 0]

A =

1 2 5
4 5 7

NaN -1 8
7 6 0

Note that A(3,1) = NaN. Because column 2 is the closest column to
column 1 in Euclidean distance, knnimpute imputes the (3,1) entry of
column 1 to be the corresponding entry of column 2, which is -1.

knnimpute(A)

ans =

2-185

knnimpute

1 2 5
4 5 7

-1 -1 8
7 6 0

Example 2

The following example loads the data set yeastdata and imputes
missing values in the array yeastvalues.

load yeastdata
% Remove data for empty spots
emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
% Impute missing values
imputedValues = knnimpute(yeastvalues);

See Also isnan, knnclassify, nanmean, nanmedian, pdist

References [1] Speed, T., Statistical Analysis of Gene Expression Microarray Data,
Chapman & Hall, 2003.

2-186

maboxplot

Purpose Display a box plot for microarray data

Syntax maboxplot(Data, 'PropertyName', PropertyValue...)
maboxplot(Data, ColumnName)
maboxplot(MasStruct, FieldName)

maboxplot(..., 'Title', TitleValue)
maboxplot(..., 'Notch', NotchValue)
maboxplot(..., 'Symbol', SymbolValue)
maboxplot(..., 'Orientation', OrientationValue)
maboxplot(..., 'WhiskerLength', WhiskerLengthValue)

H = maboxplot(...)
[H, HLines] = maboxplot(...)

Description maboxplot(Data, 'PropertyName', PropertyValue...) displays a
box plot of the values in the columns of Data. Data can be a numeric
array or a structure containing a field called Data.

maboxplot(Data,ColumnName) labels the box plot column names. For
microarray data structures that are block based, maboxplot creates a
box plot of a given field for each block.

maboxplot(MasStruct, FieldName) displays a box plot of field
FieldName for each block in microarray data structure MasStruct.

maboxplot(..., 'Title', TitleValue) allows you to specify the title
of the plot. The default Title is FieldName.

maboxplot(..., 'Notch', NotchValue) if Notch is true, draws
notched boxes. The default is false to show square boxes.

maboxplot(..., 'Symbol', SymbolValue) allows you to specify the
symbol used for outlier values. The default Symbol is '+'.

maboxplot(..., 'Orientation', OrientationValue) allows you to
specify the orientation of the box plot. The choices are 'Vertical’ and
'Horizontal'. The default is 'Vertical'.

2-187

maboxplot

maboxplot(..., 'WhiskerLength', WhiskerLengthValue) allows you
to specify the whisker length for the box plot. WhiskerLengthValue
defines the maximum length of the whiskers as a function of the
interquartile range (IQR) (default = 1.5). The whisker extends to the
most extreme data value within WhiskerLength*IQR of the box. If
WhiskerLength = 0, then maboxplot displays all data values outside the
box, using the plotting symbol Symbol.

H = maboxplot(...) returns the handle of the box plot axes.

[H, HLines] = maboxplot(...) returns the handles of the lines used
to separate the different blocks in the image.

Examples load yeastdata
maboxplot(yeastvalues,times);
xlabel('Sample Times');

% Using a structure
geoStruct = getgeodata('GSM1768');
maboxplot(geoStruct);

% For block-based data
madata = gprread('mouse_a1wt.gpr');
maboxplot(madata,'F635 Median');
figure
maboxplot(madata,'F635 Median - B635','TITLE',...

'Cy5 Channel FG - BG');

See Also Bioinformatics Toolbox functions maboxplot, maimage, mairplot,
maloglog, , manorm

Statistics Toolbox function boxplot

2-188

maimage

Purpose Display a spatial image for microarray data

Syntax maimage(X, FieldName, 'PropertyName', PropertyValue...)

maimage(..., 'Title', TitleValue)
maimage(..., 'ColorBar', ColorBarValue)
maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
H = maimage(...)
[H, HLines] = maimage(...)

Description maimage(X, FieldName, 'PropertyName', PropertyValue...)
displays an image of field FieldName from microarray data structure X.
Microarray data can be GenPix Results (GPR) format.

maimage(..., 'Title', TitleValue) allows you to specify the title of
the plot. The default title is FieldName.

maimage(..., 'ColorBar', ColorBarValue) if ColorBarValue is true,
a colorbar is shown. If ColorBarValue is false, no colorbar is shown.
The default is for the colorbar to be shown.

• ColorBarValue — Property to control displaying the colorbar in a
figure window. Enter either true or false. The default value is
false.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
allows you to pass optional Handle Graphics property name/value
pairs to the function. For example, a name/value pair for color could
be maimage(..., 'color' 'r').

H = maimage(...) returns the handle of the image.

[H, HLines] = maimage(...) returns the handles of the lines used to
separate the different blocks in the image.

Examples madata = gprread('mouse_a1wt.gpr');
maimage(madata,'F635 Median');

2-189

maimage

maimage(madata,'F635 Median - B635',...
'Title','Cy5 Channel FG - BG');

See Also Bioinformatics Toolbox functions imagesc, maboxplotmairplot,
maloglog , malowess.

2-190

mairplot

Purpose Display intensity versus ratio scatter plot for microarray signals

Syntax mairplot(X, Y, 'PropertyName', PropertyValue...)

mairplot(..., 'FactorLines', FactorLinesValue)
mairplot(..., 'Title', TitleValue)
mairplot(..., 'Labels', LabelsValue)
mairmage(..., 'HandleGraphicsPropertyName' PropertyValue)
[Intensity, Ratio] = mairplot(...)
[Intensity, Ratio, H] = mairplot(...)

Arguments
X, Y Gene expression data.

FactorLines Property to specify a factor of change.

Title Property to specify a title for the plot.

Labels Property to specify labels for the plot.

HandleGraphics Property to pass optional property name/value
pairs from Handle Graphics.

Description mairplot(X, Y, 'PropertyName', PropertyValue...) creates an
intensity versus ratio scatter plot of X versus Y.

mairplot(..., 'FactorLines', FactorLinesValue) adds lines
showing a factor of N change.

mairplot(..., 'Title', TitleValue) allows you to specify a title
for the plot.

mairplot(..., 'Labels', LabelsValue) allows you to specify a cell
array of labels for the data. If labels are defined, then clicking a point
on the plot shows the label corresponding to that point.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
allows you to pass optional Handle Graphics property name/property
value pairs to the function.

2-191

mairplot

[Intensity, Ratio] = mairplot(...) returns the intensity and ratio
values.

[Intensity, Ratio, H] = mairplot(...) returns the handle of the
plot.

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = maStruct.Data(:,36);
cy5data = maStruct.Data(:,37);
positiveVals = (cy3data>0) & (cy5data>0);
cy3data(~positiveVals) = [];
cy5data(~positiveVals) = [];
mairplot(cy3data,cy5data,'title','R vs G')
figure
names = maStruct.Names(positiveVals);
mairplot(cy3data,cy5data,'FactorLines',2,...

'Labels',maStruct.Names)

See Also Bioinformatics Toolbox functions maboxplot, maloglog, , maimage,
manorm

2-192

maloglog

Purpose Create a loglog plot of microarray data

Syntax maloglog(X, Y, 'PropertyName', PropertyValue...)

maloglog(..., 'FactorLines', FactorLinesValue)
maloglog(..., 'Title', TitleValue)
maloglog(..., 'Labels', LablesValues)
maloglog(..., 'HandleGraphicName', HGValue)
H = maloglog(...)

Description maloglog(X, Y, 'PropertyName', PropertyValue...) creates a
loglog scatter plot of X versus Y.

maloglog(..., 'FactorLines', N) adds lines showing a factor of N
change.

maloglog(..., 'Title', TitleValue) allows you to specify a title
for the plot.

maloglog(..., 'Labels', LabelsValues) allows you to specify a cell
array of labels for the data. If LabelsValues is defined, then clicking a
point on the plot shows the label corresponding to that point.

maloglog(..., 'HandleGraphicsName', HGValue) allows you to pass
optional Handle Graphics property name/property value pairs to the
function.

H = maloglog(...) returns the handle to the plot.

Examples maStruct = gprread('mouse_a1wt.gpr');
Red = maStruct.Data(:,4);
Green = maStruct.Data(:,13);
maloglog(Red, Green, 'title', 'Red versus Green')
figure
maloglog(Red, Green, 'FactorLines', 2,...

'Labels', maStruct.Names)

See Also Bioinformatics Toolbox functions maboxplot, mairplot , maimage,
mairplot, malowess, manorm

2-193

maloglog

MATLAB function loglog

2-194

malowess

Purpose Smooth microarray data using the Lowess method

Syntax YSmooth = malowess(X, Y, 'PropertyName', PropertyValue...)

malowess(..., 'Order', OrderValue)
malowess(..., 'Robust', RobustValue)
malowess(..., 'Span', SpanValue)

Arguments
X, Y Scatter data.

Order Property to select the order of the algorithm. Enter
either 1 (linear fit) or 2 (quadratic fit). The default
order is 1.

Rubust Property to select a robust fit. Enter either true or
false.

Span Property to specify the window size. The default
value is 0.05 (5% of total points in X)

Description YSmooth = malowess(X, Y, 'PropertyName', PropertyValue...)
smooths scatter data (X, Y) using the Lowess smoothing method. The
default window size is 5% of the length of X.

malowess(..., 'Order', OrderValue) chooses the order of the
algorithm. Note that the MATLAB Curve Fitting Toolbox refers to
Lowess smoothing of order 2 as Loess smoothing.

malowess(..., 'Robust', RobustValue) uses a robust fit when
RobustValue is set to true. This option can take a long time to calculate.

malowess(..., 'Span', SpanValue) modifies the window size for the
smoothing function. If SpanValue is less than 1, the window size is
taken to be a fraction of the number of points in the data. If SpanValue
is greater than 1, the window is of size SpanValue.

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = maStruct.Data(:,4);

2-195

malowess

cy5data = maStruct.Data(:,13);
[x,y] = mairplot(cy3data, cy5data);
drawnow
ysmooth = malowess(x,y);
hold on;
plot(x,ysmooth,'rx');
ynorm = y - ysmooth;

See Also Bioinformatics Toolbox functions maboxplot, maimagemairplot,
maloglog, manorm, quantilenorm

Statistics Toolbox robustfit

2-196

manorm

Purpose Normalize microarray data

Syntax XNorm = manorm(X)
XNorm = manorm(MAStruct, FieldName)
[XNorm, ColVal] = manorm(...)
manorm(..., 'Method', MethodValue)
manorm(..., 'Extra_Args', Extra_ArgsValue)
manorm(..., 'LogData', LogDataValue)
manorm(..., 'Percentile', PercentileValue)
manorm(..., 'Global', GlobalValue),
manorm(..., 'StructureOutput', StructureOutputValue)
manorm(..., 'NewColumnName', NewColumnNameValue)

Description XNorm = manorm(X) scales the values in each column of microarray data
(X) by dividing by the mean column intensity.

• X — Microarray data. Enter a vector or matrix.

• XNorm — Normalized microarray data.

XNorm = manorm(MAStruct, FieldName) scales the data for a field
(FieldName) for each block or print-tip by dividing each block by the
mean column intensity. The output is a matrix with each column
corresponding to the normalized data for each block.

• MAStruct — Microarray structure.

[XNorm, ColVal] = manorm(...) returns the values used to normalize
the data.

manorm(..., 'Method', MethodValue) allows you to choose the
method for scaling or centering the data. MethodValue can be 'Mean’
(default), 'Median’, 'STD' (standard deviation), 'MAD' (median absolute
deviation), or a function handle. If you pass a function handle, then
the function should ignore NaNs and must return a single value per
column of the input data.

2-197

manorm

manorm(..., 'Extra_Args', Extra_ArgsValue) allows you to pass
extra arguments to the function MethodValue. Extra_ArgsValue must
be a cell array.

manorm(..., 'LogData', LogDataValue), when LogDataValue is true,
works with log ratio data in which case the mean (or MethodValue) of
each column is subtracted from the values in the columns, instead of
dividing the column by the normalizing value.

manorm(..., 'Percentile', PercentileValue) only uses the
percentile (PercentileValue) of the data preventing large outliers from
skewing the normalization. If PercentileValue is a vector containing
two values, then the range from the PercentileValue(1) percentile to
the PercentileValue(2) percentile is used. The default value is 100,
that is to use all the data in the data set.

manorm(..., 'Global', GlobalValue), when GlobalValue is
true, normalizes the values in the data set by the global mean (or
MethodValue) of the data, as opposed to normalizing each column or
block of the data independently.

manorm(..., 'StructureOutput', StructureOutputValue), when
StructureOutputValue is true, the input data is a structure returns the
input structure with an additional data field for the normalized data.

manorm(..., 'NewColumnName', NewColumnNameValue), when using
StructureOutput, allows you to specify the name of the column that
is appended to the list of ColumnNames in the structure. The default
behavior is to prefix 'Block Normalized' to the FieldName string.

Examples maStruct = gprread('mouse_a1wt.gpr');
% Extract some data of interest.
Red = maStruct.Data(:,4);
Green = maStruct.Data(:,13);
% Create a log-log plot.
maloglog(Red,Green,'factorlines',true)
% Center the data.
normRed = manorm(Red);
normGreen = manorm(Green);

2-198

manorm

% Create a log-log plot of the centered data.
figure
maloglog(normRed,normGreen,'title','Normalized','factorlines',true)

% Alternatively, you can work directly with the structure
normRedBs = manorm(maStruct,'F635 Median - B635');
normGreenBs = manorm(maStruct,'F532 Median - B532');
% Create a log-log plot of the centered data. This includes some
% zero values so turn off the warning.
figure
w = warning('off','Bioinfo:MaloglogZeroValues');
maloglog(normRedBs,normGreenBs,'title',...
'Normalized Background-Subtracted Median Values',...

'factorlines',true)
warning(w);

See Also Bioinformatics Toolbox functions maboxplot, mairplot, maloglog,
malowess, quantilenorm

2-199

mapcaplot

Purpose Create a Principal Component plot of expression profile data

Syntax mapcaplot(Data)
mapcaplot(Data,Label)

Arguments
Data Microarray data

Label Data point labels.

Description mapcaplot(Data) creates 2D scatter plots of principal components of
the array DATA. The principal components used for the x and y data are
selected from popup menus, below each scatter plot.

Once the principal components have been plotted, a region can be
selected in either axes with the mouse. This will highlight the points
in the selected region, and the corresponding points in the other axes.
This will also display a list of the row numbers of the selected points
in the list box. Selecting an entry in the list box will display a label
with the row number in each axes, at the corresponding point. Clicking
on a point in the scatter plot will display a label with its row number
until the mouse is released.

mapcaplot(Data,Label) uses the elements of the cell array of strings
Label, instead of the row numbers, to label the data points.

Examples load filteredyeastdata
mapcaplot(yeastvalues,genes)

2-200

mapcaplot

2-201

mapcaplot

See Also Bioinformatics Toolbox function

Statistical Toolbox function princomp

2-202

msalign

Purpose Align peaks in mass spectrum to reference peaks

Syntax YOut = msalign(MZ, Y, R, 'PropertyName', PropertyValue...)
msalign(..., 'Weights', WeightsValue)
msalign(..., 'Range', RangeValue)
msalign(..., 'WidthOfPulses', WidthOfPulsesValue)
msalign(..., 'WindowSizeRatio', WindowSizeRatioValue)
msalign(..., 'Iterations', IterationsValue)
msalign(..., 'GridSteps', GridStepsValue)
msalign(..., 'SearchSpace', SearchSpaceValue)
[YOut, ROut] = msalign(..., 'Group', GroupValue),
msalign(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

R Reference mass vector with a list of known masses in
the sample spectrum.

Description YOut = msalign(MZ, Y, R, 'PropertyName',
PropertyValue...)aligns a raw mass spectrum (Y) by scaling and
shifting the mass/charge scale (MZ) so that the cross-correlation between
the spectrum (Y) and a synthetic spectrum is maximum. A synthetic
spectrum is built with Gaussian pulses centered at the masses specified
by the reference mass vector (R). Once the new mass/charge scale
is determined, a new spectrum (YOut) is calculated by piecewise
cubic interpolating and shifting the new spectrum from the original
mass/charge vector (MZ). This method preserves the shape of the peaks.

msalign uses an iterative grid search until it finds the best scale and
shift factors for every spectrum.

2-203

msalign

Note The algorithm works best with three to five marker masses
that you know will appear in the spectrum. If you use a single
marker mass (a single internal standard), there is a possibility of
picking a peak between the marker and sample peak for that marker
as msalign scales and shifts the MZ vector. If you only require
to shift the MZ vector, you may prefer to useYOut = interp1(MZ,
MZ-(MarkerMass-PeakPosition, Y).

msalign(..., 'Weights', WeightsValue)specifies the relative
weights for every mass in the reference mass vector (R). The size of the
weight vector (WeightsValue) must be the same as the reference mass
vector (R). The default value is ones(size(R)) with a range of 0 to1,
but you can use any range. If you have a small number of reference
masses, you might want to change the weights.

msalign(..., 'Range', RangeValue)specifies the lower and upper
bound for the allowable range in m/z units to shift any of the mass
peaks. The default value is [-100 100]. Use these values to tune the
robustness of the algorithm. Ideally, you should only try to correct small
shifts by keeping the bounds small.

Note You can try to correct larger shifts by increasing the bounds, but
you might also pick the wrong peaks to be aligned.

msalign(..., 'WidthOfPulses', WidthOfPulsesValue) specifies the
width (WidthOfPulsesValue) in m/z units for all the Gaussian pulses
used to build the correlating synthetic spectrum. WidthOfPulsesValue
is at the point where the Gaussian pulse reaches 60.65% of its
maximum. The default value is 10. WidthOfPulsesValue may also be a
function handle. The function is evaluated at the respective m/z values
and returns a variable width for the pulses. Its evaluation should give
reasonable values between 0 and max(abs(Range)); otherwise, the
function errors out.

2-204

msalign

Note Tuning the spread of the Gaussian pulses controls a tradeoff
between robustness (wider pulses) and precision (narrower pulses),
but the spread is unrelated to the shape of the observed peaks in the
spectrum.

msalign(..., 'WindowSizeRatio', WindowSizeRatioValue) specifies
a scaling value that determines the size of the window around every
alignment peak. The synthetic spectrum is correlated to the sample
spectrum only within these regions, which saves computation time.
Size of the window is given by Width * WindowSizeRatio in m/z units.
The default value is 2.5, which means at the limits of the window, the
Gaussian pulses have a value of 4.39% of their maximum.

msalign(..., 'Iterations', IterationsValue) specifies the number
of refining iterations. At every iteration the search grid is scaled down
to improve the estimates. The default value is 5.

msalign(..., 'GridSteps', GridStepsValue) specifies the number
of steps for the search grid. For example, at every iteration the search
area is divided by GridStepValue^2. The default value is 20.

msalign(..., 'SearchSpace', SearchSpaceValue) specifies the type
of search space. Enter either 'regular'(evenly spaced lattice) or
'latin' (random latin hypercube with Grid^2 samples). The default
value is 'regular'.

[YOut, ROut] = msalign(..., 'Group', GroupValue), when
GroupValue is true and Y contains more than one spectrum, updates
the original peak locations so that the actual movement of the peaks is
minimized. ROut contains the reference masses with the updated ion
peak locations. Use this property when you are uncertain about the
values for the reference masses. The default value is false.

msalign(..., 'ShowPlot', ShowPlotValue) plots the original and
the aligned spectrum over the reference masses (R). When msalign
is called without output arguments, the spectra are plotted unless

2-205

msalign

ShowPlotValue is false. When ShowPlotValues is true, only the first
spectrum in Y is plotted. The default value is false.

Example 1 1 Load sample data, reference masses, and parameter data for
synthetic peak width.

load sample_lo_res
R = [3991.4 4598 7964 9160];
W = [60 100 60 100];

2 Display a color image of the mass spectra before alignment.

msheatmap(MZ_lo_res,Y_lo_res,'markers',R,'limit',[3000 10000])
title('before alignment')

2-206

msalign

3 Align spectra with reference masses and display a color image of
mass spectra after alignment.

YA = msalign(MZ_lo_res,Y_lo_res,R,'weights',W);
msheatmap(MZ_lo_res,YA,'markers',R,'limit',[3000 10000])
title('after alignment')

Example 2 1 Align a spectrum with a single reference peak. Load sample data and
view the first sample spectrum.

load sample_lo_res
MZ = MZ_lo_res
Y = Y_lo_res(:,1)
msviewer(MZ, Y)

2-207

msalign

2 Select a reference peak by zooming and right-clicking a peak.

3 Shift a spectrum by the difference between the known reference mass
(RP) and the experimental mass (SP).

RP = 4000;
SP = 4050.33;
YOut = interp1(MZ, MZ-(RP-SP, Y);

The plot below shows the original spectrum on top and the shifted
spectrum on the bottom.

2-208

msalign

See Also Bioinformatic Toolbox functions msbackadj, msheatmap, mslowess,
msnorm, msresample, mssgolay, msviewer

2-209

msbackadj

Purpose Correct the baseline of a mass spectrum

Syntax Yout = msback(MZ, Y)
msbackadj(..., 'PropertyName', PropertyValue,...)
msbackadj(..., 'WindowSize', WindowSizeValue)
msbackadj(..., 'StepSize', StepSizeValue)
msbackadj(..., 'RegressionMethod', RegressionMethodValue)
msbackadj(..., 'EstimationMethod', EstimationMethodValue)
msbackadj(..., 'SmoothMethod', SmoothMethodValue)
msbackadj(..., 'QuantileValue', QuantileValueValue)
msbackadj(..., 'PreserveHeights', PreserveHeightsValue)
msbackadj(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = msback(MZ, Y) adjusts the variable baseline of a raw mass
spectrum by following three steps:

1 Estimates the baseline within multiple shifted windows of width
200 m/z

2 Regresses the varying baseline to the window points using a spline
approximation

3 Adjusts the baseline of the spectrum (Y)

msbackadj(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

2-210

msbackadj

msbackadj(..., 'WindowSize', WindowSizeValue) specifies the
width for the shifting window. WindowSizeValue can also be a function
handler. The function is evaluated at the respective MZ values and
returns a variable width for the windows. This option is useful for cases
where the resolution of the signal is dissimilar at different regions of
the spectrogram. The default value is 200 (baseline point estimated for
windows with a width of 200 m/z).

Note The result of this algorithm depends on carefully choosing the
window size and the step size. Consider the width of your peaks in
the spectrum and the presence of possible drifts. If you have wider
peaks towards the end of the spectrum, you may want to use variable
parameters.

msbackadj(..., 'StepSize', StepSizeValue)specifies the steps for
the shifting window. The default value is 200 m/z (baseline point is
estimated for windows placed every 200 m/z). StepSizeValue may also
be a function handle. The function is evaluated at the respective m/z
values and returns the distance between adjacent windows.

msbackadj(..., 'RegressionMethod', RegressionMethodValue)
specifies the method to regress the window estimated points to a soft
curve. Enter 'pchip' (shape-preserving piecewise cubic interpolation),
'linear'(linear interpolation), or 'spline'(spline interpolation). The
default value is 'pchip'.

msbackadj(..., 'EstimationMethod', EstimationMethodValue)
specifies the method for finding the likely baseline value in every
window. Enter 'quantile' (quantile value is set to 10%) or 'em'
(assumes a doubly stochastic model). With em, every sample is
the independent and identically distributed (i.i.d.) draw of any of
two normal distributed classes (background or peaks). Because
the class label is hidden, the distributions are estimated with an
Expectation-Maximization algorithm. The ultimate baseline value is
the mean of the background class.

2-211

msbackadj

msbackadj(..., 'SmoothMethod', SmoothMethodValue) specifies the
method for smoothing the curve of estimated points and eliminating
the effects of possible outliers. Enter 'none', 'lowess' (linear fit),
'loess' (quadratic fit), 'rlowess' (robust linear), or 'rloess' (robust
quadratic fit). Default value is 'none'.

msbackadj(..., 'QuantileValue', QuantileValueValue) specifies
the quantile value. The default value is 0.10.

msbackadj(..., 'PreserveHeights', PreserveHeightsValue), when
PreserveHeightsValue is true, sets the baseline subtraction mode to
preserve the height of the tallest peak in the signal. The default value
is false and peak heights are not preserved.

msbackadj(..., 'ShowPlot', ShowPlotValue) plots the baseline
estimated points, the regressed baseline, and the original spectrum.
When msbackadj is called without output arguments, the spectra are
plotted unless ShowPlotValue is false. When ShowPlotValue is true,
only the first spectrum in Y is plotted. ShowPlotValue can also contain
an index to one of the spectra in Y.

Example 1 Load sample data.

load sample_lo_res

2 Adjust the baseline for a group of spectra and show only the third
spectrum and its estimated background.

YB = msbackadj(MZ_lo_res,Y_lo_res,'SHOWPLOT',3);

2-212

msbackadj

3 Plot the estimated baseline for the fourth spectrum in Y_lo_res using
an anonymous function to describe an m/z dependent parameter.

wf = @(mz) 200 + .001 .* mz;
msbackadj(MZ_lo_res,Y_lo_res(:,4),'STEPSIZE',wf);

2-213

msbackadj

See Also The Bioinformatic Toolbox functions msalign, mslowess, msheatmap,
msnorm, msresample, mssgolay, msviewer

2-214

mslowess

Purpose Smooth mass spectrum using nonparametric method

Syntax Yout = mslowess(MZ, Y, 'PropertyName', PropertyValue...)
mslowess(..., 'Order', OrderValue)
mslowess(..., 'Span', SpanValue)
mslowess(..., 'Kernel', KernelValue)
mslowess(..., 'RobustIterations', RobustIterationsValue)
mslowess(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = mslowess(MZ, Y, 'PropertyName', PropertyValue...)
smoothes a mass spectrum (Y) using a locally weighted linear regression
(lowess) method with a default span of 10 samples.

Note 1) mslowess assumes that a mass/charge vector (MZ) might not
be uniformly spaced. Therefore, the sliding window for smoothing is
centered using the closest samples in terms of the MZ value and not
in terms of the MZ indices.

2) When the vector MZ does not have repeated values or NaNs, the
algorithm is approximately twice as fast.

mslowess(..., 'Order', OrderValue) specifies the order (OrderValue)
of the Lowess smoother. Enter 1 (linear polynomial fit or Lowess),
2 (quadratic polynomial fit or Loess), or 0 (equivalent to a weighted
local mean estimator and presumably faster because only a mean

2-215

mslowess

computation is performed instead of a least squares regression). The
default value is 1.

Note The MATLAB Curve Fitting Toolbox also refers to Lowess
smoothing of order 2 as Loess smoothing.

mslowess(..., 'Span', SpanValue) specifies the window size for the
smoothing kernel. If SpanValue is greater than 1, the window is equal
to SpanValue number of samples independent of the mass/charge vector
(MZ). The default value is 10 samples. Higher values will smooth the
signal more at the expense of computation time. If SpanValue is less
than 1, the window size is taken to be a fraction of the number of points
in the data. For example, when SpanValue is 0.005, the window size is
equal to 0.50% of the number of points in MZ.

mslowess(..., 'Kernel', KernelValue) selects the function
(KernelValue) for weighting the observed ion intensities. Samples close
to the MZ location being smoothed have the most weight in determining
the estimate. Enter

'tricubic' (default) (1 - (dist/dmax).^3).^3
'gaussian' exp(-(2*dist/dmax).^2)
'linear' 1-dist/dmax

mslowess(..., 'RobustIterations', RobustIterationsValue)
specifies the number of iterations (RobustValue) for a robust fit. If
RobustIterationsValue is 0 (default), no robust fit is performed. For
robust smoothing, small residual values at every span are outweighed to
improve the new estimate. 1 or 2 robust iterations are usually adequate
while, larger values might be computationally expensive.

2-216

mslowess

Note For a uniformly spaced MZ vector, a nonrobust smoothing with
Order equal to 0 is equivalent to filtering the signal with the kernel
vector.

mslowess(..., 'ShowPlot', ShowPlotValue)plots the smoothed
spectrum over the original spectrum. When mslowess is called without
output arguments, the spectra are plotted unless ShowPlotValue is
false. When ShowPlotValue is true, only the first spectrum in Y is
plotted. ShowPlotValue can also contain an index to one of the spectra
in Y.

Example 1 Load sample data.

load sample_lo_res

2 Smooth spectrum and draw figure with unsmoothed and smoothed
spectra.

YS = mslowess(MZ_lo_res,Y_lo_res(:,1),'Showplot',true);

2-217

mslowess

2-218

mslowess

See Also Bioinformatic Toolbox functions msalign, msbackadj, msheatmap,
msheatmap,msnorm, msresample, mssgolay, msviewer

2-219

msnorm

Purpose Normalize set of mass spectra

Syntax Yout = msnorm(MZ, Y)
[Yout, NormParameters]
= msnorm(...)
msnorm(MZ, NewY, NormParameters)
msnorm(..., 'PropertyName', PropertyValue,...)
msnorm(..., 'Quantile', QuantileValue)
msnorm(..., 'Limits', LimitsValue)
msnorm(..., 'Consensus', ConsensusValue)
msnorm(..., 'Method', MethodValue)
msnorm(..., 'Max', MaxValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = msnorm(MZ, Y) normalizes a group of mass spectra by
standardizing the area under the curve (AUC) to the group median.

[Yout, NormParameters] = msnorm(...) returns a structure with the
parameters to normalize another group of spectra.

msnorm(MZ, NewY, NormParameters) uses the parameter information
from a previous normalization (NormParameters) to normalize a new
set of spectra (NewY) with the MZ positions and output scale from the
previous normalization. NormParameters is a structure created by
msnorm. If a consensus proportion (ConsensusValue) was given in
the previous normalization, no new MZ positions are selected, and
normalization is performed using the same MZ positions.

msnorm(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-220

msnorm

msnorm(..., 'Quantile', QuantileValue)specifies a 1-by-2 vector
with the quantile limits for reducing the set of MZ values. For example,
when QuantileValue is [0.9 1], only the largest 10% of ion intensities
in every spectrum are used to compute the AUC. When QuantileValue
is a scalar, the scalar value represents the lower quantile limit and the
upper quantile limit is set to 1. The default value is [0 1] (use the
whole area under the curve, AUC).

msnorm(..., 'Limits', LimitsValue) specifies a 1-by-2 vector with
an MZ range for picking normalization points. This parameter is useful
to eliminate low-mass noise from the AUC calculation. The default
value is [1, max(MZ)].

msnorm(..., 'Consensus', ConsensusValue) selects MZ positions with
a consensus rule to include an MZ position into the AUC. Its ion intensity
must be within the quantile limits of at least part (ConsensusValue) of
the spectra in Y. The same MZ positions are used to normalize all the
spectrums. Enter a scalar between 0 and 1.

Use the Consensus property to eliminate low-intensity peaks and noise
from the normalization.

msnorm(..., 'Method', MethodValue) selects a method for
normalizing the AUC of every spectrum. Enter either 'Median'
(default) or 'Mean'.

msnorm(..., 'Max', MaxValue), after individually normalizing every
spectrum, scales each spectrum to an overall maximum intensity
(Max). Max is a scalar. if omitted, no postscaling is performed. If
QuantileValue is [1 1], then a single point (peak height of the tallest
peak) is normalized to Max.

Example 1 1 Load sample data and plot one of the spectra.

load sample_lo_res;
Y = Y_lo_res(:,[1 2 5 6]);
MZ = MZ_lo_res;
plot(MZ, Y(:, 4));

2-221

msnorm

2 Normalize the AUC of every spectrum to its median, eliminating
low-mass noise, and post-rescaling such that the maximum intensity
is 100.

Y1 = msnorm(MZ,Y,'Limits',[1000 inf],'Max',100);
plot(MZ, Y1(:, 4));

2-222

msnorm

3 Normalize the ion intensity of every spectrum to the maximum
intensity of the single highest peak from any of the spectra in the
range above 100 m/z.

Y2 = msnorm(MZ,Y,'QUANTILE', [1 1],'LIMITS',[1000 inf]);

Example 2 1 Select MZ regions where the intensities are within the third quartile
in at least 90% of the spectrograms.

[Y3,S] = msnorm(MZ,Y,'Quantile',[0.5 0.75],'Consensus',0.9);

2 Use the same MZ regions to normalize another set of spectrograms.

Y4 = msnorm(MZ,Y,S);

See Also Bioinformatic Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msresample, mssgolay, msviewer

2-223

msheatmap

Purpose Display color image for set of spectra

Syntax msheatmap(MZ, Y, 'PropertyName', PropertyValue...)
msheatmap(..., 'Markers', MarkersValue)
msheatmap(..., 'Limits', LimitsValues)
msheatmap(..., 'Group', GroupValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description msheatmap(MZ, Y, 'PropertyName', PropertyValue...) shows a
heatmap image of the spectra in Y.

msheatmap(..., 'Markers', MarkersValue) specifies a list of markers
with positions marked along the top axis. The default value is [].

msheatmap(..., 'Limits', LimitsValues) specifies a [2x1] vector
with the mass/charge range for the heatmap image.

msheatmap(..., 'Group', GroupValue) specifies the class label
for every spectrum used to group the rows of the heatmap image.
GroupValue can be a numeric vector or a cell array of strings with the
same number of elements as there are spectra in Y.

Examples 1 Load sample data.

load sample_lo_res
M = [3991.4 4598 7964 9160];
msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'limit',[3000 10000])

2-224

msheatmap

2 Plot heatmap.

msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'group',[1 1 2 2 1 1 2 2])

See Also The Bioinformatic Toolbox functions msalign, msbackadj, mslowess,
msnorm, msresample, mssgolay, msviewer

2-225

msresample

Purpose Resample a mass spectrometry signal

Syntax [MZout, Yout] = msresample(MZ, Y, N)
msresample(..., 'PropertyName', PropertyValue,...)
msresample(..., 'Uniform', UniformValue)
msresample(..., 'Range', RangeValue)
msresample(..., 'Missing', MissingValue)
msresample(..., 'Window', WindowValue)
msresample(..., 'Cutoff', CutoffValue)
msresample(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

N Total number of samples.

Description [MZout, Yout] = msresample(MZ, Y, N) resamples a raw mass
spectrum (Y). The output spectrum will have N samples with a spacing
that increases linearly within the range [min(MZ) max(MZ)]. MZ can be
a linear or a quadratic function of its index. When input arguments are
set such that down-sampling takes place, msresample applies a lowpass
filter before resampling to minimize aliasing.

For the antialias filter, msresample uses a linear-phase FIR filter with
a least-squares error minimization. The cu-off frequency is set by the
largest down-sampling ratio when comparing the same regions in the
MZ and MZout vectors.

Note msresample is particularly useful when you have spectra with
different mass/charge vectors and you want to match the scales.

2-226

msresample

msresample(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

msresample(..., 'Uniform', UniformValue), when UniformValue is
true, forces the vector MZ to be uniformly spaced. The default value
is false.

msresample(..., 'Range', RangeValue) specifies a 1-by-2 vector with
the mass/charge range for the output spectrum (Yout). RangeValue
must be within [min(MZ) max(MZ)]. The default value is the full range
[min(MZ) max(MZ)].

msresample(..., 'Missing', MissingValue), when MissingValue is
true, analyzes the mass/charge vector (MZ) for dropped samples. The
default value is false. If the down-sample factor is large, checking
for dropped samples might not be worth the extra computing time.
Dropped samples can only be recovered if the original MZ values follow a
linear or a quadratic function of the MZ vector index.

msresample(..., 'Window', WindowValue) specifies the window used
when calculating parameters for the lowpass filter. Enter 'Flattop',
'Blackman', 'Hamming’, or 'Hanning'. The default value is 'Flattop'.

msresample(..., 'Cutoff', CutoffValue) specifies the cutoff
frequency. Enter a scalar value between 0 and 1 (Nyquist frequency
or half the sampling frequency). By default, msresample estimates
the cutoff value by inspecting the mass/charge vectors (MZ, MZout).
However, the cutoff frequency might be underestimated if MZ has
anomalies.

msresample(..., 'ShowPlot', ShowPlotValue) plots the original and
the resampled spectrum. When msresample is called without output
arguments, the spectra are plotted unless ShowPlotValue is false.
When ShowPlotValue is true, only the first spectrum in Y is plotted.
ShowPlotValue can also contain an index to one of the spectra in Y.

Examples 1 Load mass spectrometry data and extract m/z and intensity value
vectors

load sample_hi_res;

2-227

msresample

mz = MZ_hi_res;
y = Y_hi_res;

2 Plot original data to a lower resolution.

plot(mz, y, '.')

MATLAB draws a figure.

3 Resample data

[mz1,y1] = msresample(mz, y, 10000, 'range',[2000 max(mz)]);

4 Plot resampled data

plot(mz1,y1,'.')

MATLAB draws a figure with the down sampled data.

2-228

msresample

See Also The Bioinformatic Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msnorm, , mssgolay, msviewer

2-229

mssgolay

Purpose Smooth mass spectrum with least-squares polynomial

Syntax Yout = mssgolay(MZ,Y, 'PropertyName', PropertyValue...)
mssgolay(..., 'Span', SpanValue)
mssgolay(..., 'Degree', DegreeValue)
mssgolay(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = mssgolay(MZ,Y, 'PropertyName', PropertyValue...)
smoothes a raw mass spectrum (Y) using a least squares digital
polynomial filter (Savitzky and Golay filters). The default span or frame
is 15 samples.

mssgolay(..., 'Span', SpanValue) modifies the frame size for the
smoothing function. If SpanValue is greater than 1, the window is the
size of SpanValue in samples independent of the MZ vector. Higher
values will smooth the signal more with an increase in computation
time. If SpanValue is less than 1, the window size is a fraction of the
number of points in the data (MZ). For example, if SpanValue is 0.05,
the window size is equal to 5% of the number of points in MZ.

2-230

mssgolay

Note 1) The original algorithm by Savitzky and Golay assumes a
uniformly spaced mass/charge vector (MZ), while mssgolay also allows
one that is not uniformly spaced. Therefore, the sliding frame for
smoothing is centered using the closest samples in terms of the MZ value
and not in terms of the MZ index.

2) When the vector MZ does not have repeated values or NaNs, the
algorithm is approximately twice as fast.

3) When the vector MZ is evenly spaced, the least-squares fitting
is performed once so that the spectrum is filtered with the same
coefficients, and the speed of the algorithm increases considerably.

4) If the vector MZ is evenly spaced and SpanValue is even, Span is
incremented by 1 to include both edge samples in the frame.

mssgolay(..., 'Degree', DegreeValue) specifies the degree of the
polynomial (DegreeValue) fitted to the points in the moving frame. The
default value is 2. DegreeValue must be smaller than SpanValue.

mssgolay(..., 'ShowPlot', ShowPlotValue) plots smoothed
spectra over the original. When mssgolay is called without output
arguments, the spectra are plotted unless ShowPlotValue is false.
When ShowPlotValue is true, only the first spectrum in Y is plotted.
ShowPlotValue can also contain an index to one of the spectra in Y.

Examples load sample_lo_res
YS = mssgolay(MZ_low_res, Y_low_res(:,1));
plot(MZ,[Y(:,1) YS])

See Also Bioinformatic Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msnorm, , msresample, msviewer

2-231

msviewer

Purpose Explore MS spectrum or set of spectra with GUI

Syntax msviewer(MZ, Y)
msviewer(..., 'Markers', MarkersValue)
msviewer(..., 'Group', GroupValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description msviewer(MZ, Y) creates a GUI to display and explore a mass spectrum
(Y).

msviewer(..., 'Markers', MarkersValue)specifies a list of marker
positions from the mass/charge vector (MZ) for exploration and easy
navigation. Enter a column vector with MZ values.

msviewer(..., 'Group', GroupValue) specifies a class label for
every spectrum with a different color for every class. Enter a column
vector of size [numSpectra x 1] with integers. The default value is
[numSpectra].

MSViewer GUI features include the following:

• Plot mass spectra. The spectra are plotted with different colors
according to their class labels.

• An overview displays a full spectrum, and a box indicates the region
that is currently displayed in the main window.

• Five different zoom in options, one zoom out option, and a reset view
option resize the spectrum.

• Add/focus/move/delete marker operations

2-232

msviewer

• Import/Export markers from/to MATLAB workspace

• Print and preview the spectra plot

• Print the spectra plot to a MATLAB figure window

MSViewer has five components:

• Menu bar: File, Tools, Window, and Help

• Toolbar: Zoom XY, Zoom X, Zoom Y, Reset view, Zoom out, and Help

• Main window: display the spectra

• Overview window: display the overview of a full spectrum (the
average of all spectra in display)

• Marker control panel: a list of markers, Add marker, Delete marker,
up and down buttons

Examples 1 Load and plot sample data

load sample_lo_res
msviewer(MZ_lo_res, Y_lo_res)

2 Add a marker by pointing to a mass peak, right-clicking, and then
clicking Add Marker.

3 From the File menu, select

• Import Markers from Workspace — Opens the Import Markers
From MATLAB Workspace dialog. The dialog should display a list
of double Mx1 or 1xM variables. If the selected variable is out of
range, the viewer displays an error message

• Export Markers to Workspace — Opens the Export Markers to
MATLAB Workspace dialog. You can enter a variable name for the
markers. All markers are saved. If there is no marker available,
this menu item should be disabled.

2-233

msviewer

• Print to Figure — Prints the spectra plot in the main display to
a MATLAB figure window

4 From the Tools menu, click

• Add Marker — Opens the Add Marker dialog. Enter an m/z
marker.

• Delete Marker — Removes the currently selected m/z marker
from the Markers (m/z) list.

• Next Marker or Previous Marker — Moves the selection up and
down the Markers (m/z) list.

• Zoom XY, Zoom X, Zoom Y, or Zoom Out — Changes the cursor
from an arrow to crosshairs. Left-click and drag a rectangle box
over an area and then release the mouse button. The display
zooms the area covered by the box.

5 Move the cursor to the range window at the bottom. Click and drag
the view box to a new location.

See Also Bioinformatic Toolbox functions msalign, msbackadj, mslowess, msnorm,
msheatmap, msresample, mssgolay

2-234

molweight

Purpose Calculate molecular weight of amino acid sequence

Syntax molweight(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string

or a vector of integers from the table Amino Acid
Lookup Table on page 2-14. Examples: 'ARN', [1 2
3]. You can also enter a structure with the
field Sequence.

Description molweight(SeqAA) calculates the molecular weight for the amino acid
sequence SeqAA.

Examples Get the protein sequence for cytochrome c and determine its molecular
weight.

pirdata = getpir('cchu','SequenceOnly',true)
mwcchu = molweight(pirdata)

mwcchu =
1.1749e+004

See Also Bioinformatics Toolbox functions aacount, atomiccomp, isoelectric,
proteinplot

2-235

multialign

Purpose Align multiple sequences using progressive method.

Syntax SeqsMultiAligned = multialign(Seqs)
SeqsMultiAligned = multialign(Seqs, Tree)
multialign(..., 'PropertyName', PropertyValue,...)
multialign(..., 'Weights', WeightsValue)
multialign(..., 'SmiInterp', SimiInterpValue)
multialign(..., 'GapOpen', GapOpenValue)
multialign(..., 'ExtendedGap', ExtendedGapValue)
multialign(..., 'DelayCutoff', DelayCutoffValue)
multialign(..., 'Verbose', VerboseValue)
multialign(..., 'OldGapAdjust', OldGapAdjustValue)
multialign(..., 'TerminalGapAdjust', TerminalGapAdjustValue)

Arguments
Seqs Vector of structures with the fields

'Sequence' for the residues and 'Header' or
'Name' for the labels.

Seqs may also be a cell array of strings or a
char array.

SeqsMultiAligned Vector of structures (same as Seqs) but
with the field 'Sequence' updated with the
alignment.

When Seqs is a cell or char array,
SeqsMultiAligned is a char array with the
output alignment following the same order
as the input.

Tree Phylogenetic tree calculated with either of
the functions seqlinkage or seqneighjoin.

WeightsValue Property to select the sequence weighting
method. Enter either 'THG' (default) or
'equal'.

2-236

multialign

ScoringMatrixValue Property to select or specify the scoring
matrix. Enter an [MxM] matrix or [MxMxN]
array of matrixes with N user-defined
scoring matrices. ScoringMatrixValue
may also be a cell array of strings with
matrix names.The default is the BLOSUM80
to BLOSUM30 series for amino acids or a fixed
matrix NUC44 for nucleotides. When passing
your own series of scoring matrices make
sure that all of them share the same scale.

???LUCIO: how can the default scoring
matrix for AA be a series and not a single
matrix???

GapOpenValue Scalar or a function specified using @.
multialign passes four values to the
function: the average score for two matched
residues (sm), the average score for two
mismatched residues (sx), and, the length
of both profiles or sequences (len1, len2).
Defaults value is @(sm,sx,len1,len2) 2*sm.

ExtendedGapValue Scalar or a function specified using @.
multialign passes four values to the function:
the average score for two matched residues
(sm), the average score for two mismatched
residues (sx), and the length of both profiles
or sequences (len1, len2). Default value is
@(sm,sx,len1,len2) sm/20.

DelayCutoffValue The default is unity where sequences with
the closest sequence farther than the median
distance are delayed.

Description SeqsMultiAligned = multialign(Seqs) performs a progressive
multiple alignment for a set of sequences (Seqs). Pariwise distances
between sequences are computed after pairwise alignment with the

2-237

multialign

Gonnet scoring matrix and then by counting the proportion of sites at
which each pair of sequences are different (ignoring gaps). The guide
tree is calculated by the neighbor-joining method assuming equal
variance and independence of evolutionary distance estimates.

SeqsMultiAligned = multialign(Seqs, Tree) uses a tree (Tree) as a
guide for the progressive alignment. The sequences (Seqs) should have
the same order as the leaves in the tree (Tree) or use a field ('Header'
or 'Name') to identify the sequences.

multialign(..., 'PropertyName', PropertyValue,...) enters
optional arguments as property name/value pairs.

multialign(..., 'Weights', WeightsValue) selects the sequence
weighting method. Weights emphasize highly divergent sequences by
scaling the scoring matrix and gap penalties. Closer sequences receive
smaller weights.

Values of the property Weights:

• ’THG’ — Thompson-Higgins-Gibson method using the phylogenetic
tree branch distances weighted by their thickness.

• ’equal’ — Assigns same weight to every sequence.

multialign(..., ’ScoringMatrix’, ScoringMatrixValue) selects the scoring
matrix (ScoringMatrixValue) for the progressive alignment. Match and
mismatch scores are interpolated from the series of scoring matrices
by considering the distances between the two profiles (or sequences)
being aligned. The first matrix corresponds to the smallest distance
and the last matrix to the largest distance. Intermediate distances are
calculated using linear interpolation.

multialign(..., 'SmiInterp', SimiInterpValue), when
SimiInterpValue is false, turns off the linear interpolation of the
scoring matrices. Instead, each supplied scoring matrix is assigned to
a fixed range depending on the distances between the two profiles (or
sequences) being aligned. Default is true.

2-238

multialign

multialign(..., 'GapOpen', GapOpenValue) specifies the initial
penalty for opening a gap.

multialign(..., 'ExtendedGap', ExtendedGapValue) specifies the
initial penalty for extending a gap.

multialign(..., 'DelayCutoff', DelayCutoffValue) specifies a
threshold to delay the alignment of divergent sequences whose closest
neighbor is farther than (DelayCutoffValue) * (median patristic
distance between sequences).

multialign(..., 'Verbose', VerboseValue), when VerboseValue is
true, turns on verbosity. Default value is false.

The remaining input optional arguments are analogous to the function
profalign and are used through every step of the progressive alignment
of profiles.

multialign(..., 'OldGapAdjust', OldGapAdjustValue). Default
is true.

multialign(..., 'TerminalGapAdjust', TerminalGapAdjustValue),
Default is false.

???DOC: r14sp2+ maybe, r14sp3, sometime look at profalign arguments
and add redundant info here???

Example 1 Align seven cellular tumor antigen p53 sequences.

p53 = fastaread('p53samples.txt')
ma = multialign(p53,'verbose',true)
showalignment(ma)

2 Use an UPGMA phylogenetic tree instead as a guiding tree.

dist = seqpdist(p53,'ScoringMatrix',gonnet);
tree = seqlinkage(dist,'UPGMA',p53)

3 Score the progressive alignment with the PAM family.

ma = multialign(p53,tree,'ScoringMatrix',{'pam150','pam200','pam250

2-239

multialign

showalignment(ma)

4 Promote terminations with gaps in the alignment.

seqs = {'CACGTAACATCTC','ACGACGTAACATCTTCT','AAACGTAACATCTCGC'};
multialign(seqs,'terminalGapAdjust',true)

See Also Bioinformatics Toolbox functions hmmprofalign, multialignread,
nwalign, profalign, seqprofile, seqconsensus, seqneighjoin
showalignment.

2-240

multialignread

Purpose Read multiple sequence alignment file

Syntax S = multialignread(File)
[Headers, Sequences] = multialignread(File)
multialignread(..., 'PropertyName', PropertyValue,...)
multialignread(..., 'IgnoreGaps', IgnoreGapsValue)

Arguments
File Multiple sequence alignment file (ASCII

text file). Enter a filename, a path and
filename, or a URL pointing to a file.
File can also be a MATLAB character
array that contains the text of a multiple
sequence alignment file. You can read
common multiple alignment file types,
such as ClustalW (.aln) and GCG (.msf).

IgnoreGapsValue Property to control removing gap
symbols.

Description S = multialignread(File) reads a multiple sequence alignment file.
The file contains multiple sequence lines that start with a sequence
header followed by an optional number (not used by multialignread)
and a section of the sequence. The multiple sequences are broken into
blocks with the same number of blocks for every sequence. (For an
example, type open aagag.aln.) The output S is a structure array
where S.Header contains the header information and S.Sequence
contains the amino acid or nucleotide sequences.

[Headers, Sequences] = multialignread(File) reads the file into
separate variables Headers and Sequences.

multialignread(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

multialignread(..., 'IgnoreGaps', IgnoreGapsValue), when
IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from
the sequences. Default is false.

2-241

multialignread

Example 1 Read a multiple sequence alignment of the gag polyprotein for
several HIV strains.

gagaa = multialignread('aagag.aln')

gagaa =

1x16 struct array with fields:
Header
Sequence

See Also Bioinformatics Toolbox functions fastaread, gethmmalignmet, seqdisp,
multialign, seqconsensus, seqprofile.

2-242

nmercount

Purpose Count the number of n-mers in a nucleotide or amino acid sequence

Syntax nmercount(Seq, Length)
nmercount(Seq, Length, C)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

character string or a structure with the field
Sequence.

Length Length of n-mer to count. Enter an integer.

Description nmercount(Seq, Length) counts the number of n-mers or patterns
of a specific length in a sequence.

nmercount(Seq, Length, C) returns only the n-nmers with cardinality
at least C.

Examples Count the number of n-mers in an amino acid sequence and display
the first six rows in the cell array.

S = getgenpept('AAA59174','SequenceOnly',true)
nmers = nmercount(S,4);
nmers(1:6,:)

ans =
'apes' [2]
'dfrd' [2]
'eslk' [2]
'frdl' [2]
'gnys' [2]
'lkel' [2]

See Also Bioinformatics Toolbox functions basecount, codoncount, dimercount.

2-243

nt2aa

Purpose Convert nucleotide sequence to amino acid sequence

Syntax SeqAA = nt2aa(SeqNT, 'PropertyName', PropertyValue)

nt2aa(..., 'Frame', FrameValue)
nt2aa(..., 'GeneticCode', GeneticCodeValue)
nt2aa(..., 'AlternativeStartCodons', AlternativeValue)

Arguments
SeqNT DNA nucleotide sequence. Enter a character

string with only the characters A, T, C, and G.
You cannot use the character U, ambiguous
characters, or a hyphen. You can also enter
a structure with the field Sequence.

FrameValue Property to select a frame. Enter 1, 2, 3, or
'ALL'. The default value is 1.

GeneticCodeValue Property to select a genetic code. Enter a
code number or code name from the table
Genetic Code on page 2-244. If you use a
code name, you can truncate the name to
the first two characters of the name.

AlternativeValue Property to control the use of alternative
codons. Enter either true or false. The
default value is true.

Genetic Code

Code
Number

Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

2-244

nt2aa

Code
Number

Code Name

4 Mold, Protozoan, and Coelenterate Mitochondrial
and Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description SeqAA = nt2aa(SeqNT, 'PropertyName', PropertyValue) converts
a nucleotide sequence to an amino acid sequence using the standard
genetic code.

nt2aa(..., 'Frame', FrameValue) converts a nucleotide sequence
for a specific reading frame to an amino acid sequence. If FrameValue
equals 'ALL', then the three reading frames are converted and the
output is a 3-by-1 cell array.

nt2aa(..., 'GeneticCode', GeneticCodeValue) converts a nucleotide
sequence to an amino acid sequence using a specific genetic code.

nt2aa(..., 'AlternativeStartCodons', AlternativeValue) controls
the use of alternative start codons. By default, AlternativeStartCodons

2-245

nt2aa

is set to true, and if the first codon of a sequence corresponds to a
known alternative start codon, the codon is translated to methionine.

If this option is set to false, then alternative start codons at the start
of a sequence are translated to their corresponding amino acids for the
genetic code that you use, which might not necessarily be methionine.
For example, in the human mitochondrial genetic code, AUA and AUU are
known to be alternative start codons.

For more details of alternative start codons, see

www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

Examples Convert the gene ND1 on the human mitochondria genome.

mitochondria = getgenbank('NC_001807','SequenceOnly',true)
gene = mitochondria (3308;4264)
protein1 = nt2aa(gene,'GeneticCode', 2)
protein2 = getgenpept('NP_536843',SequenceOnly',true)

Convert the gene ND2 on the human mitochondria genome. In this
case, the first codon is att, which is converted to M, while the following
att codons are converted to I. If you set 'AlternativeStartCodons' to
false, then the first codon att is converted to I.

mitochondria = getgenbank('NC_001807','SequenceOnly',true)
gene = mitochondria (3371:4264)
protein1 = nt2aa(gene,'GeneticCcode',2)
protein2 = getgenpept('NP_536844', 'SequenceOnly',true)

See Also Bioinformatics Toolbox functions aa2int, baselookup, geneticcode,
revgeneticcode, aminolookup, baselookup, codonbias, dnds, dndsml,
seqtool

2-246

nt2int

Purpose Convert nucleotide sequence from letter to integer representation

Syntax SeqInt = nt2int(SeqChar, 'PropertyName', PropertyValue)

nt2int(..., 'Unknown', UnknownValue)
nt2int(..., 'ACGTOnly', ACGTOnlyValue)

Arguments
SeqNT Nucleotide sequence represented with letters.

Enter a character string from the table Mapping
Nucleotide Letters to Integers below. Integers
are arbitrarily assigned to IUB/IUPAC letters.
If the property ACGTOnly is true, you can only
enter the characters A, C, T, G, and U.

UnknownValue Property to select the integer for unknown
characters. Enter an integer. Maximum value is
255. Default value is 0.

ACGTOnlyValue Property to control the use of ambiguous
nucleotides. Enter either true or false. Default
value is false.

Mapping Nucleotide Letters to Integers

Base Code Base Code Base Code

Adenosine A—1 T, C
(pyrimidine)

Y—6 A, T, G (not
C)

D—12

Cytidine C—2 G, T (keto) K—7 A, T, C (not
G)

H—13

Guanine G—3 A, C (amino) M—8 A, G, C (not
T)

V—14

2-247

nt2int

Base Code Base Code Base Code

Thymidine T—4 G, C (strong) S—9 A, T, G, C (any) N—15

Uridine U—4 A, T (weak) W—10 Gap of
indeterminate
length

- —16

A, G
(purine)

R—5 T, G, C (not
A)

B—11 Unknown
(default)

*—0
and
≥17

Description nt2int(SeqNT, 'PropertyName', PropertyValue) converts a
character string of nucleotides to a 1-by-N array of integers using
the table Mapping Nucleotide Letters to Integers above. Unknown
characters (characters not in the table) are mapped to 0. Gaps
represented with hyphens are mapped to 16.

nt2int(SeqNT,'Unknown',UnknownValue) defines the number used to
represent unknown nucleotides. The default value is 0.

nt2int(SeqNT,'ACGTOnly', ACGTONlyValue) if ACGTOnly is true, the
ambiguous nucleotide characters (N, R, Y, K, M, S, W, B, D, H, and V) are
represented by the unknown nucleotide number.

Examples Convert a nucleotide sequence with letters to integers.

s = nt2int('ACTGCTAGC')

s =
1 2 4 3 2 4 1 3 2

See Also Bioinformatics Toolbox function aa2int, baselookup, int2aa, int2nt

2-248

ntdensity

Purpose Plot the density of nucleotides along a sequence

Syntax ntdensity(SeqNT, 'PropertyName', PropertyValue)

ntdenstiy(..., 'Window', WindowValue)
[Density, HighCG] = ntdensity(..., 'CGThreshold',
CGThresholdValue)

Description ntdensity(SeqNT) plots the density of nucleotides A, T, C, G in sequence
SeqNT.

Denstity = ntdensity(SeqNT, 'PropertyName', PropertyValue)
returns a MATLAB structure with the density of nucleotides A, C, G,
and T.

ntdensity(..., 'Window', WindowValue) uses a window of
length Window for the density calculation. The default value is
length(SeqNT)/20.

[Density, HighCG] = ntdensity(..., 'CGThreshold',
CGThresholdValue) returns indices for regions where the CG content of
SeqNT is greater than CGThreshold. The default value for CGThreshold
is 5.

Examples s = randseq(1000, 'alphabet', 'dna');
ndensity(s)

2-249

ntdensity

See Also Bioinformatics Toolbox functions basecount, codoncount, cpgisland,
dimercount

MATLAB function filter

2-250

nuc44

Purpose Return a NUC44 scoring matrix for nucleotide sequences

Syntax ScoringMatrix = nuc44

Description The nuc44 scoring matrix uses ambiguous nucleotide codes and
probabilities rounded to the nearest integer.

Scale = 0.277316

Expected score = -1.7495024, Entropy = 0.5164710 bits

Lowest score = -4, Highest score = 5

Order: A C G T R Y K M S W B D H V N

[Matrix, MatrixInfo] = nuc44 returns the structure of information
about the matrix with Name and Order.

2-251

nwalign

Purpose Globally align two sequences using the Needleman-Wunsch algorithm

Syntax nwalign(Seq1, Seq2,
'PropertyName', PropertyValue...)

[Score, Alignment] =nwalign(Seq1, Seq2)
[Score, Alignment, Start] = nwalign(Seq1, Seq2)

nwalign(..., 'ScoringMatrix', ScoringMatrixValue)
swalign(..., 'Scale', ScaleValue)
nwalign(..., 'GapOpen', GapOpenValue)
nwalign(..., 'ExtendGap', ExtendGapValue)
nwalign(..., 'Alphabet', AlphabetVlaue)
swalign(..., 'Showscore', ShowscoreValue)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences. Enter a

character string or a structure with the field
Sequence.

Alphabet Property to select the type of sequence. Value is
either'AA' or 'NT'. The default value is 'AA'.

ScoringMatrix Enter the name of a scoring matrix. Values
are 'PAM40’, 'PAM250', DAYHOFF, GONNET,
'BLOSUM30' increasing by 5 to 'BLOSUM90',
'BLOSUM62', or 'BLOSUM100'.

The default value when AlphabetValue = 'aa'
is 'BLOSUM50', while the default value when
AlphabetValue = 'nt' is nuc44.

Scale Property to specify a scaling factor for a scoring
matrix.

GapOpen Property to specify the penalty for opening a
gap. The default value is 8.

2-252

nwalign

ExtendedGap Property to specify the penalty for extending
a gap. If ExtendGap is not specified, then the
default value is equal to GapOpen.

Showscore Property to control displaying the scoring space
and the winning path. Enter either true or
false. The default value is false.

Description nwalign(Seq1, Seq2, 'PropertyName', PropertyValue...) returns
the alignment score in bits for the optimal alignment. The scale
factor used to calculate the score is provided by the scoring matrix
information. If this is not defined, then nwalign returns the raw score.

[Score, Alignment] = nwalign(Seq1, Seq2) returns a string
showing an optimal global alignment for the sequences. Amino acids
that match are indicated with the symbol |, while related amino acids
(nonmatches with a positive scoring matrix value) are indicated with
the symbol :. Units for Score are bits.

[Score, Alignment, Start] = nwalign(Seq1, Seq2) returns a 2x1
vector with the starting point indices indicating the starting point of the
alignment in the two sequences. Note: This output is for consistency
with swalign, but because this is a global alignment, the starting
position is always [1;1].

nwalign(..., 'Alphabet', AlphabetValue) selects the amino acid or
nucleotide alphabet for sequences.

nwalign(..., 'ScoringMatrix', ScoringMatirxValue) selects the
scoring matrix to use for the alignment.

swalign(..., 'Scale', ScaleValue) specifies the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix also provides a scale factor, then both are used.

nwalign(..., 'GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment.

2-253

nwalign

nwalign(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

nwalign(..., 'Showscore', ShowscoreValue) displays the scoring
space and the winning path.

Examples Globally align two amino acid sequences.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD')

Score =
7.3333

Alignment =
VSPAGMASGYD
: | | || ||
I-P-GKAS-YD

Select scoring matrix and gap penalty.

[Score, Alignment] = nwalign('IGRHRYHIGG','SRYIGRG',...
'scoringmatrix','pam250',...
'gapopen',5)

Score =
2.3333

Alignment =

IGRHRYHIG-G
: || || |

-S--RY-IGRG

See Also Bioinformatics Toolbox functions blosum, multialign, nt2aa, pam,
profalign, seqdotplot,showalignment, swalign

2-254

palindromes

Purpose Find palindromes in a sequence

Syntax [Position, Length] = palindromes(SeqNT,
'PropertyName',

PropertyValue)
[Postion, Length, Pal] = palindromes(SeqNT)

palindromes(..., 'Length', LengthValue)
palindromes(..., 'Complement', ComplementValue)

Description [Position, Length] = palindromes(SeqNT, 'PropertyName',
PropertyValue) finds all palindromes in sequence SeqNT with a length
greater than or equal to 6, and returns the starting indices, Position,
and the lengths of the palindromes, Length.

[Position, Length, Pal] = palindromes(SeqNT) also returns a cell
array Pal of the palindromes.

palindromes(..., 'Length',LengthValue) finds all palindromes
longer than or equal to Length. The default value is 6.

palindromes(..., 'Complement', ComplementValue) finds
complementary palindromes if Complement is true, that is, where the
elements match their complementary pairs A-T(or U) and C-G instead of
an exact nucleotide match.

Examples [p,l,s] = palindromes('GCTAGTAACGTATATATAAT')

p =
11
12

l =
7
7

s =
'TATATAT'
'ATATATA'

2-255

palindromes

[pc,lc,sc] = palindromes('GCTAGTAACGTATATATAAT',...
'Complement',true);

Find the palindromes in a random nucleotide sequence.

a = randseq(100)

a =
TAGCTTCATCGTTGACTTCTACTAA
AAGCAAGCTCCTGAGTAGCTGGCCA
AGCGAGCTTGCTTGTGCCCGGCTGC
GGCGGTTGTATCCTGAATACGCCAT

[pos,len,pal]=palindromes(a)

pos =
74

len =
6

pal =
'GCGGCG'

See Also Bioinformatics Toolbox functions seqrcomplement, seqshowwords

MATLAB functions regexp, strfind

2-256

pam

Purpose Return a PAM scoring matrix

Syntax ScoringMatrix = pam(N, 'PropertyName', PropertyValue)
[ScoringMatirx, MatrixInfo] = pam(N)

ScoringMatrix = pam(..., 'Extended', ExtendedValue)
ScoringMatrix = pam(..., 'Order', 'OrderValue')

Arguments
N Enter values 10:10:500. The default ordering

of the output is A R N D C Q E G H I L K M
F P S T W Y V B Z X *.

Entering a larger value for N to allow sequence
alignments with larger evolutionary distances.

Extended Property to add ambiguous characters to the
scoring matrix. Enter either true or false.
Default is false.

Order Property to control the order of amino acids
in the scoring matrix. Enter a string with at
least the 20 standard amino acids.

Description ScoringMatrix = pam(N, 'PropertyName', PropertyValue) returns
a PAM scoring matrix for amino acid sequences.

[ScoringMatrix, MatrixInfo] = pam(N) returns a structure with
information about the PAM matrix. The fields in the structure are Name,
Scale, Entropy, Expected, and Order.

B = pam(..., 'Extended', 'ExtendedValue') if Extended is true,
returns a scoring matrix with the 20 amino acid characters, the
ambiguous characters, and stop character (B, Z, X, *), . If Extended is
false, only the standard 20 amino acids are included in the matrix.

B = pam(..., 'Order', 'OrderString') returns a PAM matrix
ordered by the amino acid sequence in Order. If Order does not contain

2-257

pam

the extended characters B, Z, X, and *, then these characters are not
returned.

PAM50 substitution matrix in 1/2 bit units, Expected score = -3.70,
Entropy = 2.00 bits, Lowest score = -13, Highest score = 13.

PAM250 substitution matrix in 1/3 bit units, Expected score = -0.844,
Entropy = 0.354 bits, Lowest score = -8, Highest score = 17.

Examples Get the PAM matrix with N = 50.

PAM50 = pam(50)

PAM250 = pam(250,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions blosum, dayhoff, gonnet, nwalign,
swalign, pam250

2-258

pdbdistplot

Purpose Visualize intermolecular distances in PDB file

Syntax pdbdistplot('PDBid')
pdbdistplot('PDBid', Distance)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier.

For example, 4hhb is the identification code for
hemoglobin.

Distance Threshold distance in Angstroms shown on a spy
plot. Default value is 7.

Description pdbdistplot displays the distances between atoms and amino acids
in a PDB structure.

pdbdistplot('PDBid') retrieves the entry PDBid from the Protein
Data Bank (PDB) database and creates a heat map showing interatom
distances and a spy plot showing the residues where the minimum
distances apart are less than 7 Angstroms. PDBid can also be the name
of a variable or a file containing a PDB MATLAB structure.

pdbdistplot('PDBid', Distance) specifies the threshold distance
shown on a spy plot.

Examples Show spy plot at 7 Angstroms of the protein cytochrome C from albacore
tuna.

pdbdistplot('5CYT');

Now take a look at 10 Angstroms.

pdbdistplot('5CYT',10);

2-259

pdbdistplot

See Also Bioinformatics Toolbox functions getpdb, pdbread, pdbplot, pdbread,
proteinplot, ramachandran

2-260

pdbplot

Purpose Plot 3D protein structure

Syntax pdbplot(PDBid, 'PropertyName', PropertyValue ...)
pdbplot(..., 'Plotmode', PlotmodeValue)
pdbplot(..., 'Colormode', ColormodeValue)
pdbplot(..., 'Showlabel', ShowlabelValue)
FigureHandle = pdbplot(...)
www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=808

Arguments
PDBid PDBID can also be the name of a PDB structure or

a file containing a PDB structure.
Plotmode Property to select display backbone and side chains.

Enter either 'backbone' or 'mainchain'. The
default value is 'backbone' for the alpha carbon
backbone.

Colormode Property to select the color of atoms or folding
patters. Enter 'atom', 'chain', or 'secondary'.
The default is 'chain'.

Description pdbplot(PDBid, 'PropertyName', PropertyValue ...) retrieves 3D
information from the Web for a protein (PDBid), and plots the backbone
structure. Information for the protein is in the Protein Data Bank
(PDB) database.

pdbplot(..., 'Plotmode', PlotmodeValue) selects a plot with only
the alpha-carbon backbone or a plot with amino acid side-chains.

pdbplot(..., 'Colormode', ColormodeValue) selects the colors for a
plot.

• If Colormode is 'atom' and Plotmode is 'mainchain', atoms and
connections are colored green for carbon, blue for nitrogen, and red
for oxygen.

• The Colormode is ”chain’, the entire structure is one color.

2-261

pdbplot

• If Colormode is 'secondary', alpha helix patterns are colored yellow,
sheets are blue, turns are gray and, non alpha helix are cyan.

pdbplot(..., 'Showlabel', ShowlabelValue) when Showlabel is
true, displays the labels that represent each amino acid name and
sequence number in the protein. The default is false.

FigureHandle = pdbplot(...) returns the handle for the PDB plot
figure.

For more on viewing PDB molecules in MATLAB, see the molecule
viewer in MATLAB Central
www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=808

Examples Plot the 3D backbone structure for the protein
Insulin-Like-Growth-Factor-1. The identification number for this
protein in the PDB database is 1B9G.

1. In the MATLAB Command Window, type

pdbplot('1B9G')

A figure window opens with the 3D structure for this protein. The figure
title displays the identification number PDB Plot 1B9G while the
bottom of the figure shows the protein title or compound name Title:
INSULIN-LIKE-GROWTH-FACTOR-1.

3. Rotate, translate, and zoom the structure with the MATLAB camera
toolbar.

4. From File menu, select

• Save to Figure file — Saves the plot to a MATLAB figure file

• Print - Prints the plot

• Close - Closes the current PDB plot figure window

• Close All - Closes all the opened PDB plot figure windows

2-262

pdbplot

5. Select the different view options from the View menu or navigation
tool on the right side of the figure.

Select an Plot option button:

• Backbone - Plots c- alpha trace

• Main Chain - Plots main chain

Select a Color check box:

• Atoms - Color atoms based on predefined color code: Red = oxygen,
Green = carbon, Blue = nitrogen

• Secondary - Color secondary structures based on predefined color
code: yellow = a-helix, blue = beta-strand, gray = turn, cyan = helix
(non-alpha), green = all other structures

Select the Show check box:

• Labels - Show amino acid sequence labels

6. From the Help menu, Help or Demos for Bioinformatics toolbox.

See Also Bioinformatics Toolbox functions getpdb, pdbdistplot, pdbread,
proteinplot, ramachandran

2-263

pdbread

Purpose Read data from Protein Data Bank (PDB) file

Syntax PDBData = pdbread('File')

Arguments
File Protein Data Bank (PDB) formatted file (ASCII text file).

Enter a filename, a path and filename, or a URL pointing
to a file. File can also be a MATLAB character array that
contains the text for a PDB file.

Description The Protein Data Bank (PDB) is an archive of experimentally
determined three-dimensional protein structures. pdbread reads data
from a PDB formatted file into MATLAB.

PDBData = pdbread('File') reads the data in PDB formatted text file
File and stores the data in the MATLAB structure PDBData.

The data stored in each record of the PDB file is converted, where
appropriate, to a MATLAB structure. For example, the ATOM records
in a PDB file are converted to an array of structures with the following
fields: AtomSerNo, AtomName, altLoc, resName, chainID, resSeq, iCode,
X, Y, Z, occupancy, tempFactor, segID, element, and charge.

The sequence information from the PDB file is stored in the Sequence
field of PDBData. The sequence information is itself a structure with the
fields NumOfResidues, ChainID, ResidueNames, and Sequence. The field
ResidueNames contains the three-letter codes for the sequence residues.
The field Sequence contains the single-letter codes for the sequence. If
the sequence has modified residues, then the ResidueNames might not
correspond to the standard three-letter amino acid codes, in which case
the field Sequence will contain a ? in the position corresponding to
the modified residue.

For more information about the PDB format, see

http://www.rcsb.org/pdb/docs/format/pdbguide2.2/
guide2.2_frame.html

2-264

http://www.rcsb.org/pdb/docs/format/pdbguide2.2/%0Dguide2.2_frame.html

pdbread

Examples Get information for the human hemoglobin protein with number 1A00
from the Protein Data Bank, store information in the file collagen.pdb,
and then read the file back into MATLAB.

getpdb('1A00','ToFile', 'collagen.pdb')
pdbdata = pdbread('collagen.pdb')

See Also Bioinformatics Toolbox functions genpeptread, getpdb, pdbplot,
pdbdistplot, pirread

2-265

pdist (phytree)

Purpose Calculate pairwise patristic distances in a phytree object

Syntax D = pdist(Tree)
[D,C] = pdist(Tree)
pdist(..., 'PropertyName', PropertyValue,...)
pdist(..., 'Nodes', NodeValue)
pdist(... , Squareform', SquareformValue)
pdist(..., 'Criteria', CriteriaValue)

Arguments
Tree Phylogenetic tree object created with the

function phytree (phytree).

NodeValue Property to select the nodes. Enter either
'leaves' (default) or ’all’.

SquareformValue Property to control creating a square matrix.

Description D = pdist(Tree) returns a vector (D) containing the patristic distances
between every possible pair of leaf nodes a phylogenetic tree object
(Tree). The patristic distances are computed by following paths through
the branches of the tree and adding the patristic branch distances
originally created with seqlinkage.

The output vector D is arranged in the order ((2,1),(3,1),...,
(M,1),(3,2),...(M,3),.....(M,M-1)) (the lower left triangle of the
full M-by-M distance matrix). To get the distance between the Ith and
Jth nodes (I > J), use the formula D((J-1)*(M-J/2)+I-J). M is the
number of leaves.

[D,C] = pdist(Tree) returns in C the index of the closest common
parent nodes for every possible pair of query nodes.

pdist(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

pdist(..., 'Nodes', NodeValue) indicates the nodes included in the
computation. When Node='leaves', the output is ordered as before, but
M is the total number of nodes in the tree (NumLeaves+NumBranches).

2-266

pdist (phytree)

pdist(... , Squareform', SquareformValue), when Squareform is
true, converts the output into a square formatted matrix, so that D(I,J)
denotes the distance between the Ith and the Jth nodes. The output
matrix is symmetric and has a zero diagonal.

pdist(..., 'Criteria', CriteriaValue) changes the criteria used to
relate pairs. C can be 'distance' (default) or 'levels'.

Examples 1 Get a phylogenetic tree from a file.

tr = phytreeread('pf00002.tree')

2 Calculate the tree distances between pairs of leaves.

dist = pdist(tr,'nodes','leaves','squareform',true)

See Also Bioinformatics Toolbox function phytree, phytreetool, seqpdist,
seqlinkage

2-267

pfamhmmread

Purpose Read data from a PFAM-HMM file

Syntax Data = pfamhmmread('File')

Arguments
File PFAM-HMM formatted file. Enter a filename, a path

and filename, or a URL pointing to a file. File can also
be a MATLAB character array that contains the text
of a PFAM-HMM file.

Description pfamhmmread reads data from a PFAM-HHM formatted file (file saved
with the function gethmmprof) and creates a MATLAB structure.

Data = pfamhmmread('File') reads from File a Hidden Markov
Model described by the PFAM format, and converts it to the MATLAB
structure Data, containing fields corresponding to annotations and
parameters of the model. For more information about the model
structure format, see hmmprofstruct. File can also be a URL or a
MATLAB cell array that contains the text of a PFAM formatted file.

pfammread is based on the HMMER 2.0 file formats.

Examples pfamhmmread('pf00002.ls')

site='http://www.sanger.ac.uk/';
pfamhmmread([site 'cgi-bin/Pfam/download_hmm.pl?id=7tm_2'])

See Also Bioinformatics Toolbox functions gethmmalignment, gethmmprof,
hmmprofalign, hmmprofstruct, showhmmprof

2-268

phytree (phytree)

Purpose Object constructor for a phylogenetic tree object

Syntax Tree = phytree(B)
Tree = phytree(B, D)
Tree = phytree(B, C)
Tree = phytree(BC)
Tree = phytree(..., N)

Arguments
B Numeric array of size [NUMBRANCHES X 2] in which

every row represents a branch of the tree. It contains
two pointers to the branch or leaf nodes.

C Column vector with distances for every branch.
D Column vector with distances from every node to their

parent branch.

BC Combined matrix with pointers to branch or leaves,
and distances of branches.

N Cell array with the names of leafs and branches.

Description Tree = phythree(B) creates an ultrametric phylogenetic tree object.

B is a numeric array of size [NUMBRANCHES X 2] in which every row
represents a branch of the tree and it contains two pointers to the
branch or leave nodes which are its children.

Leaf nodes are numbered from 1 to NUMLEAVES and branch nodes are
numbered from NUMLEAVES + 1 to NUMLEAVES + NUMBRANCHES. Note that
because only binary trees are allowed, NUMLEAVES = NUMBRANCHES + 1.

Branches are defined in chronological order (for example, B(i,:) >
NUMLEAVES + i). As a consequence, the first row can only have pointers
to leaves, and the last row must represent the root branch. Parent-child
distances are set to 1, unless the child is a leaf and to satisfy the
ultrametric condition of the tree its distance is increased.

Given a tree with 3 leafs and 2 branches as an example.

2-269

phytree (phytree)

In the MATLAB Command window, type

B = [1 2 ; 3 4]
tree = phytree(B)
view(tree)

Tree = phytree(B, D) creates an additive phylogenetic tree object with
branch distances defined by D. D is a numeric array of size [NUMNODES X
1] with the distances of every child node (leaf or branch) to its parent

2-270

phytree (phytree)

branch equal to NUMNODES = NUMLEAVES + NUMBRANCHES. The last
distance in D is the distance of the root node and is meaningless.

b = [1 2 ; 3 4]: d = [1 2 1.5 1 0]
view(phytree(b,d)

Tree = phytree(B, C) creates an ultrametric phylogenetic tree object
with branch distances defined by C. C is a numeric array of size
[NUMBRANCHES X 1] with the coordinates of every branch node. In
ultrametric trees all the leaves are at the same location (for example,
same distance to the root).

b = [1 2 ; 3 4]; c = [1 4]'
view(phytree(b,c))

Tree = phytree(BC) creates an ultrametric phylogenetic binary tree
object with branch pointers in BC(:,[1 2]) and branch coordinates in
BC(:,3). Same as phytree(B,C).

Tree = phytree(..., N) specifies the names for the leaves and/or the
branches. N is a cell of strings. If NUMEL(N)==NUMLEAVES, then the names
are assigned chronologically to the leaves. If NUMEL(N)==NUMBRANCHES,
the names are assigned to the branch nodes. If NUMEL(N)==NUMLEAVES +
NUMBRANCHES, all the nodes are named. Unassigned names default to
'Leaf #' and/or 'Branch #' as required.

Tree = phytree creates an empty phylogenetic tree object.

Method
Summary get (phytree) Get information about a

phylogenetic tree object

getbyname (phytree) Select branches and leaves from
a phytree object

getcanonical (phytree) Calculate the canonical form of a
phylogenetic tree

getnewickstr (phytree) Create Newick formatted string

2-271

phytree (phytree)

pdist (phytree) Calculate pairwise patristic
distances in a phytree object

phytree (phytree) Object constructor for a
phylogenetic tree object

plot (phytree) Draw a phylogenetic tree

prune (phytree) Remove branch nodes from
phylogenetic tree

reroot (phytree) Change the root of a phylogenetic
tree

select (phytree) Select tree branches and leaves
in phytree object

subtree (phytree) Extract a subtree

view (phytree) View phylogenetic tree

weights (phytree) Calculate weights for a
phylogenetic tree

Examples Create phylogenetic tree for a set of multiply aligned sequences.

Sequences = multialignread('aagag.aln')
distances = seqpdist(Sequences)
tree = seqlinkage(distances)
phytreetool(tree)

See Also Bioinformatics Toolbox functions dnds, phytreetool, phytreewrite,
seqlinkage, seqneighjoin, seqpdist, and the phytree object methods
get (phytree), select (phytree)

2-272

phytreeread

Purpose Read phylogenetic tree files

Syntax Tree = phytreeread(File)

Arguments
File Newick formatted tree files (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text for a file.

Tree phytree object created with the function phytree
(phytree).

Description Tree = phytreeread(Filename) reads a Newick formatted tree file and
returns a phytree object in the MATLAB workspace with data from
the file.

The NEWICK tree format can be found at

http://evolution.genetics.washington.edu/
phylip/newicktree.html

Note This implementation only allows binary trees. Non-binary trees
are translated into a binary tree with extra branches of length 0.

Examples tr = phytreeread('pf00002.tree')

See Also Bioinformatics Toolbox functions gethmmtree, phytreetool,
phytreewrite and the phytree object method phytree (phytree)

2-273

phytreetool

Purpose View, edit, and explore phylogenetic tree data

Syntax phytreetool(Tree)
phytreetool(File)

Arguments
Tree Phytree object created with the function phytree

(phytree) or dnds.

File Newick or ClustalW tree formatted file (ASCII text
file) with phylogenetic tree data. Enter a filename, a
path and filename, or a URL pointing to a file. File
can also be a MATLAB character array that contains
the text for a Newick file.

Description phytreetool is an interactive GUI that allows you to view, edit, and
explore phylogenetic tree data. This GUI allows branch pruning,
reordering, renaming, and distance exploring. It can also open or save
Newick formatted files.

phytreetool(Tree) loads data from a phytree object in the MATLAB
workspace into the GUI.

phytreetool(File) loads data from a Newick formatted file into the
GUI.

Examples tr= phytreeread('pf00002.tree')
phytreetool(tr)

See Also Bioinformatics Toolbox functions dnds, phytreewrite and the phytree
object methods phytree (phytree), plot (phytree), view (phytree)

2-274

phytreewrite

Purpose Write phylogenetic tree object to Newick formatted file

Syntax phytreewrite('File', Tree)
phytreewrite(Tree)

Arguments
File Newick formatted file. Enter either a filename or a

path and filename supported by your operating system
(ASCII text file).Tree Phylogenetic tree object. Tree must be an object
created with either the function phytree (phytree) or
imported using the function dnds.

Description phytreewrite('File', Tree) copies the contents of a phytree object
from the MATLAB workspace to a file. Data in the file uses the Newick
format for describing trees.

The NEWICK tree format can be found at

http://evolution.genetics.washington.edu/
phylip/newicktree.html

phytreewrite(Tree) opens the Save Phylogenetic tree as dialog box
for you to enter or select a filename.

Examples Read tree data from a Newick formatted file.

tr = phytreeread('pf00002.tree')

Remove all the ’mouse’ proteins

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);
view(tr)

Write pruned tree data to a file.

phytreewrite('newtree.tree', tr)

2-275

phytreewrite

See Also Bioinformatics Toolbox functions dnds, phytreetool, seqlinkage, and
the phytree object methods phytree (phytree), getnewickstr

2-276

pirread

Purpose Read data from PIR file

Syntax PIRData = pirread('File')
pirread('String')

Arguments
File Protein Information Resource (PIR-PSD) formatted

file (ASCII text file). Enter a filename, a path and
filename, or a URL pointing to a file. File can also
be a MATLAB character array that contains the text
for a PIR-PSD file.

String Character string with PIR data.

Description PIRData = pirread('File') reads data from a Protein Information
Resource (PIR-PSD) formatted file File and creates a MATLAB
structure PIRData with the following fields:

Entry
EntryType
Title
Organism
Date
Accessions
Reference
Genetics
Classification
Keywords
Feature
Summary
Sequence: [1x105 char]

pirread('String') attempts to retrieve PIR data from the string
String.

For more information on the PIR-PSD database, see

2-277

pirread

http://pir.georgetown.edu

Examples Get protein information for cytochrome C from the PIR-PSD database,
save the information in the file cchu.txt, and then read the information
back into MATLAB.

getpir('cchu', 'ToFile', 'cchu.txt')
pirdata = pirread('cchu.txt')

See Also Bioinformatics Toolbox functions genpeptread, getpir, pdbread

2-278

plot (phytree)

Purpose Draw a phylogenetic tree

Syntax plot(Tree)
plot(Tree, ActiveBranches)

plot(..., 'Type', TypeValue)
plot(..., 'Orientation', OrientationValue)
plot(..., 'BranchLabels', BranchLabelsValue)
plot(..., 'LeafLabels', LeafLabelsValue)
plot(..., 'TerminalLabels', TerminalLabelsValue)

Arguments
Tree phytree object created with the function

phytree (phytree)

ActiveBranches Branches veiwable in the figure window.

TypeValue Property to select a method for drawing
a phylogenetic tree. Enter 'square' ,
'angular', or 'radial'. The default value
is 'square'.

OrientationValue Property to orient a phylogram or cladogram
tree. Enter 'top', 'bottom', 'left', or
'right'. The default value is 'left'.

BranchLabelsValue Property to control displaying branch labels.
Enter either true or false. The default
value is false.

LeafLabelsValue Property to control displaying leaf labels.
Enter either true or false. The default
value is false.

TerminalLabels Property to control displaying terminal
labels. Enter either true or false. The
default value is false.

2-279

plot (phytree)

Description plot(Tree) draws a phylogenetic tree object into a MATLAB figure as
a phylogram. The significant distances between branches and nodes
are in the horizontal direction. Vertical distances have no significance
and are selected only for display purposes. Handles to graph elements
are stored in the figure field UserData so that you can easily modify
graphic properties.

plot(Tree, ActiveBranches) hides the nonactive branches and
all of their descendants. ActiveBranches is a logical array of size
numBranches x 1 indicating the active branches.

plot(..., 'Type', TypeValue) selects a method for drawing a
phylogenetic tree.

plot(...,'Orientation', OrientationValue) orients a phylogenetic
tree within a figure window. The Orientation property is valid only for
phylogram and cladogram trees.

plot(...,'BranchLabels', BranchLabelsValue) hides or displays
branch labels placed next to the branch node.

plot(...,'LeafLabels', LeafLabelsValue) hides or displays leaf
labels placed next to the leaf nodes.

plot(...,'TerminalLabels', TerminalLabelsValue) hides or
displays terminal labels. Terminal labels are placed over the axis tick
labels and ignored when Type= 'radial'.

H = plot(...) returns a structure with handles to the graph elements.

Examples tr = phytreeread('pf00002.tree')
plot(tr,'Type','radial')

Graph element properties can be modified as follows:

h=get(gcf,'UserData')
set(h.branchNodeLabels,'FontSize',6,'Color',[.5 .5 .5])

See Also Bioinformatics Toolbox functions dnds, phytreetool, seqlinkage

phytree object methods phytree (phytree), view (phytree)

2-280

probelibraryinfo

Purpose Extract probe set library information for probe results

Syntax ProbeInfo = probelibraryinfo(CELStruct, CDFStruct)

Description ProbeInfo = probelibraryinfo(CELStruct, CDFStruct)creates a
table of information linking the probe data in a CEL file structure with
probe set information from a CDF file structure.

ProbeInfo is a matrix with three columns and the same number of rows
as the probes field of the CELStruct. The first column is the probe set ID
number to which the corresponding probe belongs. The second column
contains the probe pair number and the third column indicates if the
probe is a perfect match (1) or mismatch (-1) probe. Probes that do
not correspond to a probe set in the CDF library file have probe set ID
equal to 0.

Note: Affymetrix probe pair indexing is 0 based while MATLAB
indexing is 1 based. The output from probelibraryinfo is 1 based.

Examples 1 Get the file Drosophila-121502.cel from

http://www.affymetrix.com/support/technical/sample_data/demo_data.a

2 Read the data into MATLAB.

celStruct = affyread('Drosophila-121502.cel');
cdfStruct = affyread('D:\Affymetrix\LibFiles\...

DrosGenome1\DrosGenome1.CDF');

3 Extract probe set library information.

probeinfo = probelibraryinfo(celStruct,cdfStruct);

4 Find out which probeset the 1104th probe belongs to

cdfStruct.ProbeSets(probeinfo(1104,1)).Name

See Also Bioinformatics Toolbox functions affyread, probesetlink,
probesetlookup, probesetvalues

2-281

probesetlink

Purpose Link to NetAffx Web site

Syntax probesetlink(AFFYStruct, ID)
URL = probesetlink(AFFYStruct, ID)
probesetlink(..., 'Source', SourceValue)
probesetlink(..., 'Browser', BrowserValue)
URL = probesetlink(..., 'NoDisplay', NoDisplayValue)

Description probesetlink(AFFYStruct, ID) displays information from the NetAffx
Web site about probe set ID from the CHP or CDF structure AFFYStruct.
IDcan be the index of the probe set or the probe set name.

URL = probesetlink(AFFYStruct, ID) returns the URL for the
information.

probesetlink(..., 'Source', SourceValue) when Source is true,
links to the data source (e.g. GenBank, Flybase) for the probe set.

probesetlink(..., 'Browser', BrowserValue) when Browser is
true, displays the information in the system Web browser.

URL = probesetlink(..., 'NoDisplay', NoDisplayValue) when
NoDisplay is true, returns the URL but does not open a browser.

Note: NetAffx Web site requires you to register and provide a user
name and password.

Examples 1 Get the file Drosophila-121502.chp from

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2 Read the data into MATLAB.

chpStruct = affyread('Drosophila-121502.chp',...
'D:\Affymetrix\LibFiles\DrosGenome1')

3 Displays information from the NetAffx Web site.

probesetlink(chpStruct,'AFFX-YEL018w/_at');

2-282

probesetlink

See Also Bioinformatics Toolbox functions affyread, probesetlookup,
probesetplot, probelibraryinfo, probesetvalues

2-283

probesetlookup

Purpose Look up gene name for probe set

Syntax probesetlookup(AFFYStruct, ID)
probesetlookup(AFFYStruct, Name)
[Name, NDX, Description, Source, SourceURL] = probesetlookup(...)

Description probesetlookup(AFFYStruct, ID) returns the gene name for a probe
set ID from a CHP or CDF structure (AFFYStruct).

probesetlookup(AFFYStruct, Name) returns the probe set ID for a
gene name (Name) from a CHP or CDF structure (AFFYStruct).

[Name, NDX, Description, Source, SourceURL] =
probesetlookup(...) returns the name, index into the CHP
or CDF struct, , description, source, and source URL and for the probe set.

Examples 1 Get the file Drosophila-121502.chp from

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2 Read the data into MATLAB.

chpStruct = affyread('Drosophila-121502.chp',...
'D:\Affymetrix\LibFiles\DrosGenome1')

3 Get the gene name.

probesetlookup(chpStruct,'AFFX-YEL018w/_at')

See Also Bioinformatics Toolbox functions affyread, probesetlink,
probesetplot, probelibraryinfo

2-284

probesetplot

Purpose Plots values for Affymetrix CHP file probe set

Syntax probesetplot(CHPStruct, ID, 'PropertyName', PropertyValue)
probesetplot(..., 'GeneName', GeneNameValue)
probesetplot(..., 'Field', FieldValue)
probesetplot(..., 'ShowStats',ShowStatsValue)

Description probesetplot(CHPStruct, ID, 'PropertyName', PropertyValue)
plots the PM and MM intensity values for probe set ID. CHPStruct is
a structure created from an Affymetrix CHP file. ID can be the index of
the probe set or the probe set name. Note: the probe set numbers for
a CHP file use 0 based indexing while MATLAB uses 1 based indexing.
CHPStruct.ProbeSets(1) has ProbeSetNumber 0.

probesetplot(..., 'GeneName', GeneNameValue) when GeneName is
true, uses the gene name, rather than the probeset name for the title.

probesetplot(..., 'Field', FieldValue) shows the data for a field
(FieldValue). Valid fieldnames are: Background, Intensity, StdDev,
Pixels, and Outlier.

probesetplot(..., 'ShowStats',ShowStatsValue) when ShowStats
is true, adds mean and standard deviation lines to the plot.

Examples 1 Get the file Drosophila-121502.chp from

http://www.affymetrix.com/support/technical/sample_data/demo_data.a

2 Read the data into MATLAB.

chpStruct = affyread('Drosophila-121502.chp',...
'D:\Affymetrix\LibFiles\DrosGenome1')

3 Plots PM and MM intensity values.

probesetplot(chpStruct,'AFFX-YEL018w/_at','showstats',true);

See Also Bioinformatics Toolbox functions affyread, probesetlink,
probesetlookup

2-285

probesetvalues

Purpose Extract probe set values from probe results

Syntax PSValues = probesetvalues(CELStruct, CDFStruct, PS)

Description PSValues = probesetvalues(CELStruct, CDFStruct, PS) creates a
table of values for a probe set (PS) from the probe data in a CEL file
structure (CELStruct). PS is a probe set index or probe set name from
the CDF library file structure (CDFStruct). PSValues is a matrix with 18
columns and one row for each probe pair in the probe set. The columns
correspond to the fields in a CHP probe set data structure:

'ProbeSetNumber'
'ProbePairNumber'
'UseProbePair'
'Background'
'PMPosX'
'PMPosY'
'PMIntensity'
'PMStdDev'
'PMPixels'
'PMOutlier'
'PMMasked'
'MMPosX'
'MMPosY'
'MMIntensity'
'MMStdDev'
'MMPixels'
'MMOutlier'
'MMMasked'

There are some minor differences between the output of this function
and the data in a CHP file. The PM and MM Intensity values in the CHP
file are normalized by the Affymetrix software. This function returns
the raw intensity values. The 'UseProbePair' and 'Background' fields
are only returned by this function for compatibility with the CHP probe
set data structure and are always set to zero.

2-286

probesetvalues

Examples 1 Get the file Drosophila-121502.cel from

http://www.affymetrix.com/support/technical/sample_data/demo_data.a

2 Read the data into MATLAB.

celStruct = affyread('Drosophila-121502.cel');
cdfStruct = affyread('D:\Affymetrix\LibFiles\DrosGenome1\...

DrosGenome1.CDF');

3 Get the values for probe set 147439_at.

psvals = probesetvalues(celStruct,cdfStruct,'147439_at')

See Also Bioinformatics Toolbox functions affyread, probelibraryinfo,
probesetlink, probesetlookup

2-287

profalign

Purpose Align two profiles using Needleman-Wunsch global alignment

Syntax Prof = profalign(Prof1, Prof2)
[Prof, H1, H2] = profalign(Prof1, Prof2)
profalign(..., 'PropertyName', PropertyValue,...)
profalign(..., 'ScoringMatrix', ScoringMatrixValue)
profalign(..., 'GapOpen', {G1Value, G2Value})
profalign(..., 'ExtendGap', {E1Value, E2Value})
profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue)
profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue)
profalign(..., 'ShowScore', ShowScoreValue)

Description Prof = profalign(Prof1, Prof2) returns a new profile (Prof) for the
optimal global alignment of two profiles (Prof1, Prof2). The profiles
(Prof1, Prof2) are numeric arrays of size [(4 or 5 or 20 or 21) x
Profile Length] with counts or weighted profiles. Weighted profiles
are used to down-weight similar sequences and up-weight divergent
sequences. The output profile is a numeric matrix of size [(5 or 21)
x New Profile Length] where the last row represents gaps. Original
gaps in the input profiles are preserved. The output profile is the result
of adding the aligned columns of the input profiles.

[Prof, H1, H2] = profalign(Prof1, Prof2) returns pointers that
indicate how to rearrange the columns of the original profiles into the
new profile.

profalign(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

profalign(..., 'ScoringMatrix', ScoringMatrixValue) defines the
scoring matrix (ScoringMatrixValue) to be used for the alignment.
The default is 'BLOSUM50' for amino acids or 'NUC44' for nucleotide
sequences.

profalign(..., 'GapOpen', {G1Value, G2Value}) sets the penalties
for opening a gap in the first and second profiles respectively. G1Value
and G2Value can be either scalars or vectors. When using a vector, the
number of elements is one more than the length of the input profile.
Every element indicates the position specific penalty for opening a gap

2-288

profalign

between two consecutive symbols in the sequence. The first and the last
elements are the gap penalties used at the ends of the sequence. The
default gap open penalties are {10,10}.

profalign(..., 'ExtendGap', {E1Value, E2Value}) sets the
penalties for extending a gap in the first and second profile respectively.
E1Value and E2Value can be either scalars or vectors. When using
a vector, the number of elements is one more than the length of the
input profile. Every element indicates the position specific penalty for
extending a gap between two consecutive symbols in the sequence. The
first and the last elements are the gap penalties used at the ends of the
sequence. If ExtendedGap is not specified, then extensions to gaps are
scored with the same value as GapOpen.

profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue), if
ExistingGapAdjustValue is false, turns off the automatic adjustment
based on existing gaps of the position-specific penalties for opening a
gap. When ExistingGapAdjustValue is true, for every profile position,
profalign proportionally lowers the penalty for opening a gap toward
the penalty of extending a gap based on the proportion of gaps found in
the contiguous symbols and on the weight of the input profile.

profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue),
when TerminalGapAdjustValue is true, adjusts the penalty for opening
a gap at the ends of the sequence to be equal to the penalty for extending
a gap. Default is false.

profalign(..., 'ShowScore', ShowScoreValue), when
ShowScoreValue is true, displays the scoring space and the winning
path.

Examples 1 Read in sequences and create profiles.

ma1 = ['RGTANCDMQDA';'RGTAHCDMQDA';'RRRAPCDL-DA'];
ma2 = ['RGTHCDLADAT';'RGTACDMADAA'];
p1 = seqprofile(ma1,'gaps','all','counts',true);
p2 = seqprofile(ma2,'counts',true);

2 Merge two profiles into a single one by aligning them.

2-289

profalign

p = profalign(p1,p2);
seqlogo(p)

3 Use the output pointers to generate the multiple alignment.

[p, h1, h2] = profalign(p1,p2);
ma = repmat('-',5,12);
ma(1:3,h1) = ma1;
ma(4:5,h2) = ma2;
disp(ma)

4 Increase the gap penalty before cysteine in the second profile.

gapVec = 10 + [p2(aa2int('C'),:) 0] * 10
p3 = profalign(p1,p2,'gapopen',{10,gapVec});
seqlogo(p3)

5 Add a new sequence to a profile without inserting new gaps into the
profile.

gapVec = [0 inf(1,11) 0];
p4 = profalign(p3,seqprofile('PLHFMSVLWDVQQWP'),...

gapopen',{gapVec,10});
seqlogo(p4)

See Also Bioinformatics Toolbox functions hmmprofalign, multialign, nwalign,
seqprofile, seqconsensus

2-290

proteinplot

Purpose Display characteristics for amino acid sequences

Syntax proteinplot(SeqAA)

Arguments
SeqAA Amino acid sequence or a structure with a field Sequence

containing an amino acid sequence.

Description proteinplot is a tool for analyzing a single amino acid sequence.
You can use the results from proteinplot to compare the properties
of several amino acid sequences. It displays smoothed line plots of
various properties such as the hydrophobicity of the amino acids in
the sequence.

Importing sequences into proteinplot

1 In the MATLAB Command Window, type

proteinplot(Seq_AA)

The proteinplot interface opens and the sequence Seq_AA is shown
in the Sequence text box.

2 Alternatively, type or paste an amino acid sequence into the
Sequence text box.

You can can import a sequence with the Import dialog box.

1 Click the Import Sequence button. The Import dialog box opens.

2 From the Import From list, select, a variable in the MATLAB
workspace, ASCII text file, FASTA formatted file, GenPept formatted
file, or accession number in the GenPept database.

Information about the properties

2-291

proteinplot

You can also access information about the properties from the Help
menu.

1 From the Help menu, click References. The Help Browser opens
with a list of properties and references.

2 Scroll down to locate the property you are interested in studying.

Working with Properties

When you click on a property a smoothed plot of the property values
along the sequence will be displayed. Multiple properties can be
selected from the list by holding down Shift or Ctrl while selecting
properties. When two properties are selected, the plots are displayed
using a PLOTYY-style layout, with one Y axis on the left and one on
the right. For all other selections, a single Y axis is displayed. When
displaying one or two properties, the Y values displayed are the actual
property values. When three or more properties are displayed, the
values are normalized to the range 0-1.

You can add your own property values by clicking on the Add button
next to the property list. This will open up a dialog that allows you to
specify the values for each of the amino acids. The Display Text box
allows you to specify the text that will be displayed in the selection box
on the main proteinplot window. You can also save the property values
to an m-file for future use by typing a file name into the Filename box.

The Terminal Selection boxes allow you to choose to plot only part of
the sequence. By default all of the sequence is plotted. The default
smoothing method is an unweighted linear moving average with
a window length of five residues. You can change this using the
"Configuration Values" dialog from the Edit menu. The dialog allows
you to select the window length from 5 to 29 residues. You can modify
the shape of the smoothing window by changing the edge weighting
factor. And you can choose the smoothing function to be a linear moving
average, an exponential moving average or a linear Lowess smoothing.

The File menu allows you to Import a sequence, save the plot that you
have created to a FIG file, you can export the data values in the figure

2-292

proteinplot

to a workspace variable or to a MAT file, you can export the figure to a
normal figure window for customizing, and you can print the figure.

The Edit menu allows you to create a new property, to reset the property
values to the default values, and to modify the smoothing parameters
with the Configuration Values menu item.

The View menu allows you to turn the toolbar on and off, and to add
a legend to the plot.

The Tools menu allows you to zoom in and zoom out of the plot, to view
Data Statistics such as mean, minimum and maximum values of the
plot, and to normalize the values of the plot from 0 to 1.

The Help menu allows you to view this document and to see the
references for the sequence properties built into proteinplot

See Also Bioinformatics Toolbox functions aacount, atomiccomp, msalign,
pdbdistplot, pdbplot, seqtool.

MATLAB function plotyy

2-293

prune (phytree)

Purpose Remove branch nodes from phylogenetic tree

Syntax T2 = prune(T1, Nodes)
T2 = prune(T1, Nodes, 'Mode','Exclusive')

Arguments
T1 Phylogenetic tree object. See phytree

(phytree).

Nodes Nodes to remove from tree.

Mode Property to control the method of pruning.
Enter either 'Inclusive' or 'Exclusive'. The
default value is 'Inclusive'.

Description T2 = prune(T1, Nodes)removes the nodes listed in the vector Nodes
from the tree T1. prune removes any branch or leaf node listed in Nodes
and all their descendants from the tree T1, and returns the modified
tree T2. The parent nodes are connected to the ’brothers’ as required.
Nodes in the tree are labeled as [1:numLeaves] for the leaves and as
[numLeaves+1:numLeaves+numBranches] for the branches. Nodes can
also be a logical array of size [numLeaves+numBranches x 1] indicating
the nodes to be removed.

T2 = prune(T1, Nodes, 'Mode','Exclusive')changes the property
(Mode) for pruning to 'Exclusive' and removes only the descendants
of the nodes listed in the vector Nodes. Nodes that do not have a
predecessor become leaves in the list Nodes. In this case, pruning is the
process of reducing a tree by turning some branch nodes into leaf nodes,
and removing the leaf nodes under the original branch.

Examples Load a phylogenetic tree created from a protein family

tr = phytreeread('pf00002.tree');
view(tr)

% To :

2-294

prune (phytree)

Remove all the ’mouse’ proteins use

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);
view(tr)

Remove potential outliers in the tree

[sel,sel_leaves] = select(tr,'criteria','distance',...
'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

tr = prune(tr,~sel_leaves)
view(tr)

See Also Bioinformatics Toolbox function phytree (phytree), phytreetool, and
methods for the phytree object select and get

2-295

quantilenorm

Purpose performs quantile normalization over multiple arrays

Syntax

Description NORMDATA = QUANTILENORM(DATA), where the columns of DATA
correspond to separate chips, normalizes the distributions of the
values in each column. Note that if DATA contains NaN values, then
NORMDATA will also contain NaNs at the corresponding positions.

NORMDATA = QUANTILENORM(...,’MEDIAN’,true) takes the median
of the ranked values instead of the mean.

NORMDATA = QUANTILENORM(...,’DISPLAY’,true) plots the
distributions of the columns and of the normalized data.

Examples load yeastdata
normYeastValues = quantilenorm(yeastvalues,'display',1);

See Also malowess, manorm.

2-296

ramachandran

Purpose Draw Ramachandran plot for PDB data

Syntax ramachandran('PDBid')
ramachandran('File')
ramachandran(PDBData)
Angles = ramachandran(...)
[Angles, Handle] = ramachandran(...)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier. For example, 4hhb is the
identification code for hemoglobin.

File Protein Data Bank (PDB) formatted file (ASCII text
file). Enter a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB character
array that contains the text for a PDB file.

PDBData MATLAB structure with PDB formatted data.

Description ramachandran generates a plot of the torsion angle PHI (torsion angle
between the 'C-N-CA-C' atoms) and the torsion angle PSI (torsion angle
between the 'N-CA-C-N' atoms) of the protein sequence.

ramachandran(PDBid) generates the Ramachandran plot for the protein
with PDB code ID.

ramachandran('File') generates the Ramachandran plot for protein
stored in the PDB file File.

ramachandran(PDBData) generates the Ramachandran plot for the
protein stored in the structure PDBData, where PDBData is a MATLAB
structure obtained by using pdbread or getpdb.

Angles = ramachandran(...) returns an array of the torsion angles
PHI, PSI, and OMEGA for the residue sequence.

[Angles, Handle] = ramachandran(...) returns a handle to the plot.

2-297

ramachandran

Examples Generate the Ramachandran plot for the human serum albumin
complexed with octadecanoic acid.

ramachandran('1E7I')

See Also Bioinformatics Toolbox functions getpdb, pdbdistplot, pdbread,
pdbplot

2-298

randfeatures

Purpose Generate a randomized subset of features

Syntax [IDX, Z] = randfeatures(X, Group, 'PropertyName',
PropertyValue...)
randfeatures(..., 'Classifier', C)
randfeatures(..., 'ClassOptions', CO)
randfeatures(..., 'PerformanceThreshold', PT)
randfeatures(..., 'ConfidenceThreshold', CT)
randfeatures(..., 'SubsetSize', SS)
randfeatures(..., 'PoolSize', PS)
randfeatures(..., 'NumberOfIndices', N)
randfeatures(..., 'CrossNorm', CN)
randfeatures(..., 'Verbose', VerboseValue)

Description [IDX, Z] = randfeatures(X, Group, 'PropertyName',
PropertyValue...) performs a randomized subset feature search
reinforced by classification. randfeatures randomly generates subsets
of features used to classify the samples. Every subset is evaluated with
the apparent error. Only the best subsets are kept, and they are joined
into a single final pool. The cardinality for every feature in the pool
gives the measurement of the significance.

X contains the training samples. Every column of X is an observed
vector. Group contains the class labels. Group can be a numeric vector or
a cell array of strings; numel(Group) must be the same as the number
of columns in X, and numel(unique(Group)) must be greater than or
equal to 2. Z is the classification significance for every feature. IDX
contains the indices after sorting Z; i.e., the first one points to the most
significant feature.

randfeatures(..., 'Classifier', C) sets the classifier. Options are

'da' (default) Discriminant analysis
'knn' K nearest neighbors

randfeatures(..., 'ClassOptions', CO)is a cell with
extra options for the selected classifier. Defaults are

2-299

randfeatures

{5,'correlation','consensus'} for KNN and {'linear'} for DA. See
knnclassify and classify for more information.

randfeatures(..., 'PerformanceThreshold', PT) sets the correct
classification threshold used to pick the subsets included in the final
pool. Default is 0.8 (80%).

randfeatures(..., 'ConfidenceThreshold', CT) uses the posterior
probability of the discriminant analysis to invalidate classified
subvectors with low confidence. This option is only valid when
Classifier is 'da'. Using it has the same effect as using 'consensus'
in KNN; i.e., it makes the selection of approved subsets very stringent.
Default is 0.95.^(number of classes).

randfeatures(..., 'SubsetSize', SS) sets the number of features
considered in every subset. Default is 20.

randfeatures(..., 'PoolSize', PS) sets the targeted number of
accepted subsets for the final pool. Default is 1000.

randfeatures(..., 'NumberOfIndices', N) sets the number of output
indices in IDX. Default is the same as the number of features.

randfeatures(..., 'CrossNorm', CN) applies independent
normalization across the observations for every feature.
Cross-normalization ensures comparability among different features,
although it is not always necessary because the selected classifier
properties might already account for this. Options are

'none' (default) Intensities are not cross-normalized.
'meanvar' x_new = (x - mean(x))/std(x)
'softmax' x_new = (1+exp((mean(x)-x)/std(x)))^-1
'minmax' x_new = (x - min(x))/(max(x)-min(x))

randfeatures(..., 'Verbose', VerboseValue), when Verbose is
true, turns off verbosity. Default is true.

Examples Find a reduced set of genes that is sufficient for classification of all the
cancer types in the t-matrix NCI60 data set. Load sample data.

2-300

randfeatures

load NCI60tmatrix

Select features.

I = randfeatures(X,GROUP,'SubsetSize',15,'Classifier','da');

Test features with a linear discriminant classifier.

C = classify(X(I(1:25),:)',X(I(1:25),:)',GROUP);
cp = classperf(GROUP,C);
cp.CorrectRate

See Also ,Bioinformatics Toolbox Functionsclassperf, crossvalind,
rankfeatures, svmclassify

Statistical Toolbox function classify

2-301

randseq

Purpose Generate random sequence from finite alphabet

Syntax Seq = randseq(Length, 'PropertyName', PropertyValue)

randseq(..., 'Alphabet', AlphabetValue)
randseq(..., 'Weights', WeightsValue)
randseq(..., 'FromStructure', FromStructureValue)
randseq(..., 'Case',CaseValue)
randseq(..., 'DataType', DataTypeValue)

Arguments
Length

AlphabetValue Property to select the alphabet for the
sequence. Enter 'dna', 'rna', or 'amino'.
The default value is 'dna'.

WeightsValue Property to specify a weighted random
sequence.

FromStructureValue Property to specify a weighted random
sequence using output structures from
the functions basecount, dimercount,
codoncount, or aacount.

CaseValue Property to select the case of letters in a
sequence when Alphabet is 'char'. Values
are'upper' or 'lower'. The default value
is 'upper'.

DataTypeValue Property to select the data type for a
sequence. Values are 'char' for letter
sequences, and 'uint8' or 'double' for
numeric sequences.

Creates a sequence as an array of DataType.
The default data type is 'char'.

2-302

randseq

Description randseq(...,'Alphabet', AlphabetValue) generates a sequence from
a specific alphabet.

randseq(..., 'Weights', WeightsValue) creates a weighted random
sequence where the ith letter of the sequence alphabet is selected
with weight W(i). The weight vector is usually a probability vector or
a frequency count vector. Note that the ith element of the nucleotide
alphabet is given by int2nt(i), and the ith element of the amino acid
alphabet is given by int2aa(i).

randseq(..., 'FromStructure', FromStructureValue) creates a
weighted random sequence with weights given by the output structure
from basecount, dimercount, codoncount, or aacount.

randseq(..., 'Case', CaseValue) specifies the case for a letter
sequence.

randseq(...,'DataType', DataTypeValue) specifies the data type for
the sequence array.

Examples Generate a random DNA sequence.

randseq(20)

ans =
TAGCTGGCCAAGCGAGCTTG

Generate a random RNA sequence.

randseq(20,'alphabet','rna')

ans =
GCUGCGGCGGUUGUAUCCUG

Generate a random protein sequence.

randseq(20,'alphabet','amino')

ans =
DYKMCLYEFGMFGHFTGHKK

2-303

randseq

See Also Statistics Toolbox functions hmmgenerate, randsample

MATLAB functions rand, randperm,

2-304

rankfeatures

Purpose Rank key features by class separability criteria

Syntax [IDX, Z] = rankfeatures(X, Group)
rankfeatures(..., 'PropertyName', PropertyValue,...)
rankfeatures(..., 'Criterion', CriterionValue)
rankfeatures(..., 'CCWeighting', ALPHA)
rankfeatures(..., 'NWeighting', BETA)
rankfeatures(..., 'NumberOfIndices', N)
rankfeatures(..., 'CrossNorm', CN)

Description [IDX, Z] = rankfeatures(X, Group) ranks the features in X using
an independent evaluation criterion for binary classification. X is a
matrix where every column is an observed vector and the number of
rows corresponds to the original number of features. Group contains
the class labels.

IDX is the list of indices to the rows in X with the most significant
features. Z is the absolute value of the criterion used (see below).

Group can be a numeric vector or a cell array of strings; numel(Group) is
the same as the number of columns in X, and numel(unique(Group)) is
equal to 2.

rankfeatures(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

rankfeatures(..., 'Criterion', CriterionValue)sets the criterion
used to assess the significance of every feature for separating two
labeled groups. Options are

'ttest'
(default)

Absolute value two-sample T-test with pooled
variance estimate

'entropy' Relative entropy, also known as Kullback-Lieber
distance or divergence

'brattacharyya' Minimum attainable classification error or
Chernoff bound

2-305

rankfeatures

'roc' Area under the empirical receiver operating
characteristic (ROC) curve

'wilcoxon' Absolute value of the u-statistic of a two-sample
unpaired Wilcoxon test, also known as
Mann-Whitney

Notes: 1) 'ttest', 'entropy', and 'brattacharyya' assume normal
distributed classes while 'roc' and 'wilcoxon' are nonparametric
tests. 2) All tests are feature independent.

rankfeatures(..., 'CCWeighting', ALPHA) uses correlation
information to outweigh the Z value of potential features using Z *
(1-ALPHA*(RHO)) where RHO is the average of the absolute values of
the cross-correlation coefficient between the candidate feature and all
previously selected features. ALPHA sets the weighting factor. It is
a scalar value between 0 and 1. When ALPHA is 0 (default) potential
features are not weighted. A large value of RHO (close to 1) outweighs
the significance statistic; this means that features that are highly
correlated with the features already picked are less likely to be included
in the output list.

rankfeatures(..., 'NWeighting', BETA) uses regional
information to outweigh the Z value of potential features using Z
* (1-exp(-(DIST/BETA).^2)) where DIST is the distance (in rows)
between the candidate feature and previously selected features. BETA
sets the weighting factor. It is greater than or equal to 0. When BETA is
0 (default) potential features are not weighted. A small DIST (close to 0)
outweighs the significance statistics of only close features. This means
that features that are close to already picked features are less likely
to be included in the output list. This option is useful for extracting
features from time series with temporal correlation.

BETA can also be a function of the feature location, specified using @
or an anonymous function. In both cases rankfeatures passes the
row position of the feature to BETA() and expects back a value greater
than or equal to 0.

Note: You can use CCWeighting and NWeighting together.

2-306

rankfeatures

rankfeatures(..., 'NumberOfIndices', N) sets the number of output
indices in IDX. Default is the same as the number of features when
ALPHA and BETA are 0, or 20 otherwise.

rankfeatures(..., 'CrossNorm', CN) applies independent
normalization across the observations for every feature.
Cross-normalization ensures comparability among different features,
although it is not always necessary because the selected criterion might
already account for this. Options are

'none'
(default)

Intensities are not cross-normalized.

'meanvar' x_new = (x - mean(x))/std(x)

'softmax' x_new = (1+exp((mean(x)-x)/std(x)))^-1

'minmax' x_new = (x - min(x))/(max(x)-min(x))

Examples 1 Find a reduced set of genes that is sufficient for differentiating breast
cancer cells from all other types of cancer in the t-matrix NCI60 data
set. Load sample data.

load NCI60tmatrix

2 Get a logical index vector to the breast cancer cells.

BC = GROUP == 8;

3 Select features.

I = rankfeatures(X,BC,'NumberOfIndices',12);

4 Test features with a linear discriminant classifier.

C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate

2-307

rankfeatures

5 Use cross-correlation weighting to further reduce the required
number of genes.

I = rankfeatures(X,BC,'CCWeighting',0.7,'NumberOfIndices',8);
C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate

6 Find the discriminant peaks of two groups of signals with Gaussian
pulses modulated by two different sources load GaussianPulses.

f = rankfeatures(y',grp,'NWeighting',@(x) x/10+5,'NumberOfIndices',5);
plot(t,y(grp==1,:),'b',t,y(grp==2,:),'g',t(f),1.35,'vr')

See Also Statistical Toolbox functions classify, classperf, crossvalind,
randfeatures, svmclassify

2-308

rebasecuts

Purpose Find restriction enzymes that cut a protein sequence

Syntax [Enzymes, Sites] = rebasecuts(SeqNT)
rebasecuts(SeqNT, Group)
rebasecuts(SeqNT, [Q, R])
rebasecuts(SeqNT, S)

Arguments
SeqNT Amino acid sequence.

Enzymes Cell array with the names of restriction enzymes
from REBASE Version 412.

Sites Vector of cut sites with the base number before
every cut relative to the sequence.

Group Cell array with the names of valid restriction
enzymes.

Q, R, S Base positions.

Description [Enzymes, Sites] = rebasecuts(SeqNT) finds all the restriction
enzymes that cut an amino acid sequence (SeqNT).

rebasecuts(SeqNT, Group) limits the search to a specified list of
enzymes (Group).

rebasecuts(SeqNT, [Q, R]) limits the search to those enzymes that
cut after a specified base position (Q) and before a specified base position
(R) relative to the sequence.

rebasecuts(SeqNT, S) limits the search to those enzymes that cut just
after a specified base position (S).

REBASE, the Restriction Enzyme Database, is a collection of
information about restriction enzymes and related proteins. For more
information about REBASE, see

http://rebase.neb.com/rebase/rebase.html

2-309

rebasecuts

Example 1 Enter a nucleotide sequence.

seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA'

2 Look for all possible cleavage sites in the sequence seq.

[enzymes sites] = rebasecuts(seq)

3 Find where restriction enzymes CfoI and Tru9I cut the sequence.

[enzymes sites] = rebasecuts(seq, {'CfoI','Tru9I'})

4 Search for any possible enzymes that cut after base 7.

enzymes = rebasecuts(seq, 7)

5 Get the subset of enzymes that cut between base 11 and 37.

enzymes = rebasecuts(seq, [11 37])

See Also Bioinformatics Toolbox functions cleave, seq2regexp, seqshowwords,
restrict

MATLAB function regexp

2-310

redgreencmap

Purpose Display a red and green colormap

Syntax redgreencmap(Length)

Arguments
Length Length of the colormap. Enter either 256 or 64.

The default value is the length of the colormap
of the current figure.

Description redgreencmap(Length) returns an M-by-3 matrix containing a red and
green colormap. Low values are bright green, values in the center of the
map are black, and high values are red.

redgreencmap, by itself, is the same length as the current colormap.

Examples Reset the color map of the current figure.

pd =gprread('mouse_a1pd.gpr')
maimage(pd,'F635 Median')
colormap(redgreencmap)

See Also Bioinformatics Toolbox function

MATLAB functions colormap, colormapeditor

2-311

reroot (phytree)

Purpose Change the root of a phylogenetic tree

Syntax Tree2 = reroot(Tree1)
Tree2 = reroot(Tree1, Node)
Tree2 = reroot(Tree1, Node, Distance)

Description Tree2 = reroot(Tree1) changes the root of a phylogenetic tree (Tree1)
using a midpoint method. The midpoint is the location where the mean
values of the branch lengths, on either side of the tree, are equalized.
The original root is deleted from the tree.

Tree2 = reroot(Tree1, Node) changes the root of a phylogenetic tree
(Tree1) to a branch node using the node index (Node). The new root is
placed at half the distance between the branch node and its parent.

Tree2 = reroot(Tree1, Node, Distance) changes the root of a
phylogenetic tree (Tree1) to a new root at a given distance (Distance)
from the reference branch node (Node) toward the original root of the
tree. Note: The new branch representing the root in the new tree
(Tree2) is labeled 'Root'.

Examples 1 Create an ultrametric tree.

tr_1 = phytree([5 7;8 9;6 11; 1 2;3 4;10 12;...
14 16; 15 17;13 18])

plot(tr_1,'branchlabels',true)

MATLAB draws a figure with the phylogenetic tree.

2-312

reroot (phytree)

2 Place the root at 'Branch 7'.

sel = getbyname(tr_1,'Branch 7');
tr_2 = reroot(tr_1,sel)
plot(tr_2,'branchlabels',true)

MATLAB draws a tree with the root moved to the center of branch 7.

2-313

reroot (phytree)

3 Move the root to a branch that makes the tree as ultrametric as
possible.

tr_3 = reroot(tr_2)
plot(tr_3,'branchlabels',true)

MATLAB draws the new tree with the root moved from the center
of branch 7 to branch 8.

2-314

reroot (phytree)

See Also Phytree methods phytree, get, getbyname, prune, select,
seqneighjoin

2-315

restrict

Purpose Split nucleotide sequence at specified restriction site

Syntax Fragments = restrict(SeqNT, Enzyme)
Fragments = restrict(SeqNT, Pattern, Position)
[Fragments, CuttingSites] = restrict(...)
[Fragments, CuttingSites, Lengths] = restrict(...)
restrict(..., 'PropertyName', PropertyValue,...)
restrict(..., 'PartialDigest', PartialDigestValue)

Arguments
SeqNT Nucleotide sequence. Enter either a character

string with the characters A, T, G, C, and
ambiguous characters R, Y, K, M, S, W, B, D, H, V,
N, or a vector of integers. You can also enter a
structure with the field Sequence.

Enzyme Enter the name of a restriction enzyme from
REBASE Version 412.

Pattern Enter a short nucleotide pattern. Pattern can
be a regular expression.

Position Defines the position on Pattern where the
sequence is cut. Position=0 corresponds to
the 5’ end of the Pattern.

PartialDigestValue Property to specify a probability for partial
digestion. Enter a value from 0 to 1.

Description Fragments = restrict(SeqNT, Enzyme) cuts a SEQ sequence into
fragments at the restriction sites of restriction enzyme (Enzyme). The
return values are stored in a cell array of sequences.

2-316

restrict

Fragments = restrict(SeqNT, Pattern, Position) cuts a sequence
(SeqNT) into fragments at specified restriction sites specified by a
nucleotide pattern (Pattern).

[Fragments, CuttingSites] = restrict(...) returns a numeric
vector with the indices representing the cutting sites. A 0 (zero) is
added to the list so numel(Fragments)==numel(CuttingSites). You
can use CuttingSites+1 to point to the first base of every fragment
respective to the original sequence.

[Fragments, CuttingSites, Lengths] = restrict(...) returns a
numeric vector with the lengths of every fragment.

restrict(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

restrict(..., 'PartialDigest', PartialDigestValue) simulates
a partial digest where each restriction site in the sequence has a
probability PartilDigest of being cut.

REBASE, the restriction enzyme database, is a collection of information
about restriction enzymes and related proteins. Search REBASE for the
name of a restriction enzyme at

http://rebase.neb.com/rebase/rebase.html

For more information on REBASE, go to

http://rebase.neb.com/rebase/rebase.html

Example 1 Enter a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Use the recognition pattern (sequence) GCGC with the point of
cleavage at position 3 to cleave a nucleotide sequence.

fragmentsPattern = restrict(Seq,'GCGC',3)

fragmentsPattern =

2-317

restrict

'AGAGGGGTACGCG'
'CTCTGAAAAGCGGGAACCTCGTGGCG'
'CTTTATTAA'

3 Use the restriction enzyme HspAI (recognition sequence GCGC with
the point of cleavage at position 1) to cleave a nucleotide sequence.

fragmentsEnzyme = restrict(Seq,'HspAI')

fragmentsEnzyme =
'AGAGGGGTACG'
'CGCTCTGAAAAGCGGGAACCTCGTGG'
'CGCTTTATTAA'

4 Use a regular expression for the enzyme pattern.

fragmentsRegExp = restrict(Seq,'GCG[^C]',3)

fragmentsRegExp =

'AGAGGGGTACGCGCTCTGAAAAGCG'
'GGAACCTCGTGGCGCTTTATTAA'

5 Capture the cutting sites and fragment lengths with the fragments.

[fragments, cut_sites, lengths] = restrict(Seq,'HspAI')

fragments =
'AGAGGGGTACG'
'CGCTCTGAAAAGCGGGAACCTCGTGG'
'CGCTTTATTAA'

cut_sites =
0

11
37

lengths =

2-318

restrict

11
26
11

See Also Bioinformatics Toolbox function cleave, seq2regexp, seqshowwords,
rebasecuts

MATLAB function regexp

2-319

revgeneticcode

Purpose Get the reverse mapping for a genetic code

Syntax map = revgeneticcode
revgeneticcode(GeneticCode,

'PropertyName', PropertyValue ...)

revgeneticcode(..., 'Alphabet' AlphabetValue)
revgeneticcode(..., 'ThreeLetterCodes', CodesValue)

Arguments
GeneticCode Enter a code number or code name from the

table Genetic Code on page 2-320. If you use a
code name, you can truncate the name to the
first two characters of the name.

AlphabetValue Property to select the nucleotide alphabet.
Enter either 'dna' or 'rna'. The default value
is 'dna'.

CodesValue Property to select one- or three-letter amino
acid codes. Enter true for three-letter code or
false for one-letter code.

Genetic Code

Code
Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

2-320

revgeneticcode

Code
Number Code Name

4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial, and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description map = revgeneticcode returns a structure containing the reverse
mapping for the standard genetic code.

revgeneticcode(GeneticCode, 'PropertyName', PropertyValue
...) returns a structure of the inverse mapping for alternate genetic
codes.

revgeneticcode(..., 'Alphabet' AlphabetValue) defines the
nucleotide alphabet to use in the map.

revgeneticcode(..., 'ThreeLetterCodes', CodesValue) returns the
mapping structure with three-letter amino acid codes as field names
instead of the default single-letter codes if ThreeLetterCodes is true.

2-321

revgeneticcode

Examples moldcode = revgeneticcode(4,'Alphabet','rna');
wormcode = revgeneticcode('Flatworm Mitochondrial',...

'ThreeLetterCode',true);

map = revgeneticcode

map =
Name: 'Standard'

A: {'GCT' 'GCC' 'GCA' 'GCG'}
R: {'CGT' 'CGC' 'CGA' 'CGG' 'AGA' 'AGG'}
N: {'AAT' 'AAC'}
D: {'GAT' 'GAC'}
C: {'TGT' 'TGC'}
Q: {'CAA' 'CAG'}
E: {'GAA' 'GAG'}
G: {'GGT' 'GGC' 'GGA' 'GGG'}
H: {'CAT' 'CAC'}
I: {'ATT' 'ATC' 'ATA'}
L: {'TTA' 'TTG' 'CTT' 'CTC' 'CTA' 'CTG'}
K: {'AAA' 'AAG'}
M: {'ATG'}
F: {'TTT' 'TTC'}
P: {'CCT' 'CCC' 'CCA' 'CCG'}
S: {'TCT' 'TCC' 'TCA' 'TCG' 'AGT' 'AGC'}
T: {'ACT' 'ACC' 'ACA' 'ACG'}
W: {'TGG'}
Y: {'TAT' 'TAC'}
V: {'GTT' 'GTC' 'GTA' 'GTG'}

Starts: {'TAA' 'TAG' 'TGA'}

See Also Bioinformatics Toolbox functions aa2nt, aminolookup, baselookup,
geneticcode, nt2aa

2-322

rna2dna

Purpose Convert RNA sequence of nucleotides to DNA sequence

Syntax SeqDNA = rna2dna(SeqRNA)

Arguments
SeqRNA Nucleotide sequence for RNA. Enter a character string

with the characters A, C, U, G, and the ambiguous
nucleotide bases N, R, Y, K, M, S, W, B, D, H, and V.

Description SeqDNA = rna2dna(SeqRNA) converts any uracil nucleotides in an RNA
sequence into thymine (U–>T), and returns in the same format as DNA.
For example, if the RNA sequence is an integer sequence then so is
SeqRNA.

Examples rna2dna('ACGAUGAGUCAUGCUU')

ans =
ACGATGAGTCATGCTT

See Also Bioinformatics Toolbox function dna2rna

MATLAB functions strrep, regexp

2-323

scfread

Purpose Read trace data from SCF file

Syntax [Sample, Probability, Comments] = scfread('File')
[A,C,T,G, ProbA, ProbC, ProbG, ProbT,
Comments] = scfread ('File')

Arguments
File SCF formatted file. Enter a filename or a path and

filename.

Description scfread reads data from a SCF formatted file into a MATLAB structure.

[Sample, Probability, Comments] = scfread('File') reads an SCF
formatted file and returns the sample data in the structure Sample,
with fields A, C, T, G, probability data in the structure Probability,
and comment information from the file in Comments.

[A,C,T,G, ProbA, ProbC, ProbG, ProbT, Comments] = scfread
('File') reads an SCF formatted file and returns the sample data and
probabilities for nucleotides in separate variables.

SCF files store data from DNA sequencing instruments. Each
file includes sample data, sequence information, and the relative
probabilities of each of the four bases. For more information on SCF
files, see

http://www.mrc-lmb.cam.ac.uk/pubseq/manual/formats_unix_2.html

Examples Examples of SCF files can be found at

ftp://ftp.ncbi.nih.gov/pub/TraceDB/example/

Unzip the file bcm-example.tgz with SCF files to your MATLAB
working directory.

[Sample, Probability, Comments] = scfread('HCIUP1D61207.scf')

Sample =

2-324

scfread

A: [10827x1 double]
C: [10827x1 double]
G: [10827x1 double]
T: [10827x1 double]

Probability =
prob_A: [742x1 double]
prob_C: [742x1 double]
prob_G: [742x1 double]
prob_T: [742x1 double]

Comments =

SIGN=A=121,C=103,G=119,T=82
SPAC= 16.25
PRIM=0
MACH=Arkansas_SN312
DYEP=DT3700POP5{BD}v2.mob
NAME=HCIUP1D61207
LANE=6
GELN=
PROC=
RTRK=
CONV=phred version=0.990722.h
COMM=
SRCE=ABI 373A or 377

See Also Bioinformatics Toolbox functions genbankread, traceplot

2-325

select (phytree)

Purpose Select tree branches and leaves in phytree object

Syntax S = select(T)
S = select(T, N)
[S, Selleaves, Selbranches] = select(...)

S = select(..., 'Reference', ReferenceValue)
S = select(..., 'Criteria', CriteriaValue)
S = select(..., 'Threshold', ThresholdValue)
S = select(..., 'Exclude', ExcludeValue)
S = select(..., 'Propagate', PropagateValue)

Arguments
Tree Phylogenetic tree created with the function

phytree (phytree).

N Number of closest nodes to the root node.

ReferenceValue Property to select a reference point for
measuring distance.

CriteriaValue Property to select a criteria for measuring
distance.

ThresholdValue Property to select a distance value. Nodes with
distances below this value are selected.

ExcludeValue Property to remove (exclude) branch or
leaf nodes from the output. Enter 'none',
'branchs', or 'leaves'. The default value is
'none'.

PropagateValue Property to select propagating nodes toward
the leaves or the root.

Description S = select(Tree, N) returns a logical vector (S) of size [NumNodes
x 1] indicating the N closest nodes to the root node of a phytree
object (Tree) where NumNodes = NumLeaves + NumBranches. The first
criterion select uses is branch levels, then patristic distance (also

2-326

select (phytree)

known as tree distance). By default, select uses inf as the value of N,
and select(Tree) returns a vector with values of true.

S = select(..., 'Reference', ReferenceValue) changes the
reference point(s) to measure the closeness. Reference can be the
root (default) or leaves. When using leaves, a node can have multiple
distances to its descendant leaves (nonultrametric tree). If this the case,
select considers the minimum distance to any descendant leaf.

S = select(..., 'Criteria', CriteriaValue) changes the criteria
select uses to measure closeness. If C = 'levels' (default), the
first criterion is branch levels and then patristic distance. If C =
'distance', the first criterion is patristic distance and then branch
levels.

S = select(..., 'Threshold', ThresholdValue) selects all the
nodes where closeness is less than or equal to the threshold value V.
Notice that you can also use either of the properties 'criteria' or
'reference', if N is not specified, then N = infF; otherwise you can
limit the number of selected nodes by N.

S = select(..., 'Exclude', ExcludeValue) sets a postfilter that
excludes all the branch nodes from S when E='branches' or all the leaf
nodes when E='leaves'. The default is 'none'.

S = select(..., 'Propagate', PropagateValue) activates a
postfunctionality that propagates the selected nodes to the leaves when
P=='toleaves' or toward the root finding a common ancestor when P
== 'toroot'. The default value is 'none'. P may also be 'both'. The
'Propagate' property acts after the 'Exclude' property.

[S, Selleaves, Selbranches] = select(...) returns two additional
logical vectors, one for the selected leaves and one for the selected
branches.

2-327

select (phytree)

Examples % Load a phylogenetic tree created from a protein family:
tr = phytreeread('pf00002.tree');

% To find close products for a given protein (e.g. vips_human):
ind = getbyname(tr,'vips_human');
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',0.6,'reference',ind);
view(tr,sel_leaves)

% To find potential outliers in the tree, use
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

view(tr,~sel_leaves)

See Also The Bioinformatics Toolbox functions phytree (phytree), phytreetool

phytree object methods get, pdist, prune.

2-328

seq2regexp

Purpose Convert sequence with ambiguous characters to regular expression

Syntax seq2regexp(Seq)

Arguments
Seq Nucleotide or amino acid sequence.

Nucleotide Conversions

Nucleotide
Letter Nucleotide Nucleotide Letter Nucleotide

A—A Adenosine S—[GC] (Strong)

C—C Cytosine W—[AT] (Weak)

G—G Guanine B—[GTC]

T—T Thymidine D—[GAT]

U—U Uridine H—[ACT]

R—[GA] (Purine) V—[GCA]

Y—[TC] (Pyrimidine) N—[AGCT] Any nucleotide

K—[GT] (Keto) - — - Gap of
indeterminate
length

M—[AC] (Amino) ?—? Unknown

Amino Acid Conversion

Amino Acid Letter Description

B—[DN] Aspartic acid or
asparagine

2-329

seq2regexp

Amino Acid Letter Description

Z—[EQ] Glutamic acid or
glutamine

X—[ARNDCQEGHILKMFPSTWYV] Any amino acid

Description seq2regexp(Seq) converts ambiguous nucleotide or amino acid symbols
in a sequence into a regular expression format using IUB/IUPAC codes.

Examples Convert a nucleotide sequence into a regular expression.

r = seq2regexp('ACWTMAN')

r =
AC[AT]T[AC]A[AGCT]

See Also Bioinformatics Toolbox functions , seqwordcount

MATLAB functions regexp, regexpi

2-330

seqcomplement

Purpose Calculate complementary strand of nucleotide sequence

Syntax SeqC = seqcomplement(SeqNT)

Arguments
SeqNT Enter either a character string with the characters A,

T (U), G, C, and ambiguous characters R, Y, K, M, S, W, B,
D, H, V, N, or a vector of integers. You can also enter a
structure with the field Sequence.

Description SeqC = seqcomplement(SeqNT) calculates the complementary strand
(A–>T, C–>G, G–>C, T–>A) of a DNA sequence and returns a sequence in
the same format as SeqNT. For example, if SeqNT is an integer sequence
then so is SeqC.

Examples Return the complement of a DNA nucleotide sequence.

s = 'ATCG';
seqcomplement(s)

ans =
TAGC

See Also Bioinformatics Toolbox functions seqrcomplement, seqreverse, seqtool

2-331

seqconsensus

Purpose Calculate a consensus sequence

Syntax CSeq = seqconsensus(Seqs)
[CSeq, Score] = seqconsensus(Seqs)
CSeq = seqconsensus(Profile)
seqconsensus(..., 'PropertyName', PropertyValue,...)
seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)

Arguments
Seqs Set of multiply aligned amino acid or

nucleotide sequences. Enter an array of
strings, a cell array of strings, or an array of
structures with the field Sequence.

Profile Sequence profile. Enter a profile from the
function seqprofile. Profile is a matrix of
size [20 (or 4) x Sequence Length] with
the frequency or count of amino acids (or
nucleotides) for every position. Profile can
also have 21 (or 5) rows if gaps are included
in the consensus.

ScoringMatrixValue Scoring matrix. The default value is
BLOSUM50 for amino acid sequences or NUC44
for nucleotide sequences. ScoringMatrix
can also be a 21x21, 5x5, 20x20, or 4x4
numeric array. For the gap-included cases,
gap scores (last row/column) are set to
mean(diag(ScoringMatrix))for a gap
matching with another gap, and set to
mean(nodiag(ScoringMatrix)) for a gap
matching with another symbol

Description CSeq = seqconsensus(Seqs), for a multiply aligned set of sequences
(Seqs), returns a string with the consensus sequence (CSeq). The
frequency of symbols (20 amino acids, 4 nucleotides) in the set of
sequences is determined with the function seqprofile. For ambiguous

2-332

seqconsensus

nucleotide or amino acid symbols, the frequency or count is added to
the standard set of symbols.

[CSeq, Score] = seqconsensus(Seqs) returns the conservation score
of the consensus sequence. Scores are computed with the scoring
matrix BLOSUM50 for amino acids or NUC44 for nucleotides. Scores are
the average euclidean distance between the scored symbol and the
M-dimensional consensus value. M is the size of the alphabet. The
consensus value is the profile weighted by the scoring matrix.

CSeq = seqconsensus(Profile) returns a string with the consensus
sequence (CSeq) from a sequence profile (Profile).

seqconsensus(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)
specifies the scoring matrix.

The following input parameters are analogous to the function
seqprofile when the alphabet is restricted to 'AA' or 'NT'.

seqconsensus(..., 'Alphabet', AlphabetValue)

seqconsensus(..., 'Gaps', GapsValue)

seqconsensus(..., 'Ambiguous', AmbiguousValue)

seqconsensus(..., 'Limits', LimitsValue)

Examples seqs = fastaread('pf00002.fa');
[C,S] = seqconsensus(seqs,'limits',[50 60],'gaps','all')

See Also Bioinformatics Toolbox functions fastaread, , profalign,seqdisp,
seqlogo, seqprofile

2-333

seqdisp

Purpose Format long sequence output for easy viewing

Syntax seqdisp(Seq, 'PropertyName', PropertyValue ...)

seqdisp(..., 'Row', RowValue)
seqdisp(..., 'Column', ColumnValue)
seqdisp(..., 'ShowNumbers', ShownumbersValue)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

character array, a FASTA filename, or a MATLAB
structure with the field Sequence. Multiply aligned
sequences are allowed.

FASTA files can have the file extension fa, fasta,
fas, fsa, or fst.

Row Property to select the length of each row. Enter an
integer. The default length is 60.

Column Property to select the column width or number of
symbols before displaying a space. Enter an integer.
The default column width is 10.

ShowNumbers Property to control displaying numbers at the start
of each row. Enter either true or false. The default
value is true to show numbers.

Description seqdisp(Seq, 'PropertyName', PropertyValue ...) displays a
sequence (Seq) in rows with a default row length of 60 and a default
column width of 10.

seqdisp(..., 'Row', RowValue) specifies the length of each row for
the displayed sequence.

seqdisp(..., 'Column', ColumnValue) specifies the number of letters
to display before adding a space. Row must be larger than and evenly
divisible by Column.

2-334

seqdisp

seqdisp(..., 'ShowNumbers', ShowNumbersValue) when
ShowNumbers is false, turns off the position numbers at the start of
each row off.

Examples Read sequence information from the GenBank database. Display the
sequence in rows with 50 letters, and within a row, separate every 10
letters with a space.

mouseHEXA = getgenbank('AK080777');
seqdisp(mouseHEXA, 'Row', 50, 'Column', 10)

Create and save a FASTA file with two sequences, and then display it.

hdr = ['Sequence A'; 'Sequence B'];
seq = ['TAGCTGRCCAAGGCCAAGCGAGCTTN';'ATCGACYGGTTCCGGTTCGCTCGAAN']
fastawrite('local.fa', hdr, seq);
seqdisp('local.fa', 'ShowNumbers', false')

ans =
>Sequence A
1 TAGCTGRCCA AGGCCAAGCG AGCTTN

>Sequence B
1 ATCGACYGGT TCCGGTTCGC TCGAAN

See Also Bioinformatics Toolbox function multialignread, seqconsensus,
seqlogo, seqprofile, seqshoworfs, seqshowwords, seqtoolgetgenbank

2-335

seqdotplot

Purpose Create dot plot of two sequences

Syntax seqdotplot(Seq1,Seq2)
seqdotplot(Seq1,Seq2, Window, Number)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences. Enter two

character strings. Do not enter a vector of integers.
You can also enter a structure with the field
Sequence.

Window Enter an integer for the size of a window.

Number Enter an integer for the number of characters
within the window that match.

Description seqdotplot (Seq1, Seq2) plots a figure that visualizes the match
between two sequences.

seqdotplot(Seq1,Seq2, Window, Number) plots sequence matches
when there are at least Number matches in a window of size Window.

When plotting nucleotide sequences, start with a Window of 11 and
Number of 7.

Matches = seqdotplot(...) returns the number of dots in the dot
plot matrix.

[Matches, Matrix] = seqdotplot(...) = returns the dotplot as a sparse
matrix.

Examples This example shows the similarities between the prion protein (PrP)
nucleotide sequences of two ruminants, the moufflon and the golden
takin.

moufflon = getgenbank('AB060288','Sequence',true);
takin = getgenbank('AB060290','Sequence',true);
seqdotplot(moufflon,takin,11,7)

2-336

seqdotplot

Matches = seqdotplot(moufflon,takin,11,7)
Matches =

5552

[Matches, Matrix] = seqdotplot(moufflon,takin,11,7)

See Also Bioinformatics Toolbox functions nwalign, swalign

2-337

seqlinkage

Purpose Construct phylogenetic tree from pairwise distances

Syntax Tree = seqlinkage(Dist)
Tree = seqlinkage(Dist, Method)
Tree = seqlinkage(Dist, Method, Names)

Arguments
Dist Pairwise distances generated from the function

seqpdist.

Method Property to select a distance method. Enter a
method from the table below.

Names Property to use alternative labels for leaf nodes.
Enter a vector of structures, with the fields
'Header' or 'Name', or a cell array of strings. In
both cases the number of elements you provide
must comply with the number of samples used to
generate the pairwise distances in Dist.

Description Tree = seqlinkage(Dist) returns a phylogenetic tree object from the
pairwise distances (Dist) between the species or products. Dist is a
matrix (or vector) such as is generated by the function seqpdist.

Tree = seqlinkage(Dist, Method) creates a phylogenetic tree object
using a specified patristic distance method. The available methods are

'single' Nearest distance (single linkage method)

'complete' Furthest distance (complete linkage method)

'average' (default) Unweighted Pair Group Method Average
(UPGMA, group average).

'weighted' Weighted Pair Group Method Average
(WPGMA)

2-338

seqlinkage

'centroid' Unweighted Pair Group Method Centroid
(UPGMC)

'median' Weighted Pair Group Method Centroid
(WPGMC)

Tree = seqlinkage(Dist, Method, Names) passes a list of names to
label the leaf nodes (for example, species or products) in a phylogenetic
tree object.

Examples % Load a multiple alignment of amino acids:
seqs = fastaread('pf00002.fa');
% Measure the 'Jukes-Cantor' pairwise distances:
dist = seqpdist(seqs,'method','jukes-cantor',...

'indels','pair');
% Build the phylogenetic tree with the single linkage
% method and pass the names of the sequences:
tree = seqlinkage(dist,'single',seqs)
view(tree)

See Also The Bioinformatics Toolbox functions phytree (phytree),
phytreewrite, seqpdist, seqneighjoin

phytree object methods plot and view

2-339

seqlogo

Purpose Display sequence logo for nucleotide and amino acid sequences

Syntax seqlogo(Seqs)
seqlogo(Profile)
DiplayInfo = seqlogo(Seqs)
DisplayInfo = seqlogo(..., 'Displaylogo', DisplaylogoValue).
seqlogo(..., 'Alphabet', AlphabetValue)
seqlogo(..., 'Startat', StartatValue)
seqlogo(..., 'Endat', EndatValue)
seqlogo(..., 'SSCorrection', SSCorrectionValue).

Arguments
Seqs Set of pairwise or multiply aligned amino acid or

nucleotide sequences. Enter an array of strings,
a cell array of strings, or an array of structures
with the field Sequence.

Displaylogo Property to control drawing a sequence logo.
Enter either true or false.

Description seqlogo(Seqs) displays a sequence logo for a set of aligned sequences
(Seqs). The logo graphically displays the sequence conservation at a
particular position in the alignment of sequences measured in bits. The
maximum sequence conservation per site is log2(4) bits for nucleotide
sequences and log2(20) bits for amino acid sequences.

seqlogo(Profile) displays a sequence logo for a sequence profile (P)
retruned by the function seqprofile.

Profile For amino acids, frequency distribution matrix of size
[20 x sequence length]. For nucleotides, matrix
of size [4 x sequence length] using the DNA
alphabet. If gaps were included, Profile may have
21 (or 5) rows , but seqlogo ignores gaps.

The alphabet for nucleic acids is colored as follows

2-340

seqlogo

A Green

C Blue

G Yellow

T, U Red

The alphabet for proteins is colored according to chemical property as
follows

G S T Y C Q N (Polar) — Green

A V L I P W F M (Hydrophobic) — Orange

D E (Acidic) — Red

K R H (Basic) — Blue

Ambiguous symbols not in the list above are added to the logo and
colored purple.

DiplayInfo = seqlogo(Seqs)returns a cell array of unique symbols
in a sequence (Seqs) and the information weight matrix used for
graphically displaying the logo.

DisplayInfo = seqlogo(..., 'Displaylogo', DisplaylogoValue).
when Displaylogo is false, returns display information, but does not
draw the sequence logo.

seqlogo(..., 'Alphabet', AlphabetValue) selects the alphabet for
nucleotide sequences ('NT') or amino acid sequences ('AA'). The default
is 'NT'. If you provide amino acid sequences to seqlogo, you must select
'AA' for the Alphabet.

seqlogo(..., 'Startat', StartatValue) specifies the starting
position for the sequences (Seqs). The default starting position is 1.

seqlogo(..., 'Endat', EndatValue) specifies the ending position
for the sequences (Seqs). The default ending position is the maximum
length of the sequences (Seqs).

2-341

seqlogo

seqlogo(..., 'SSCorrection', SSCorrectionValue). when
SSCorrection is false, no estimation is made for the number of bits.
A simple calculation of bits tends to overestimate the conservation at
a particular location. To compensate for this overestimation, when
SSCorrection is true, a rough estimate is applied as an approximate
correction. This correction works better when the number of sequences
is greater than 50. The default is true.

Reference

Schneider, T.D., Stephens, R.M., “Sequence Logos: A new way to display
consensus sequences,” Nucleic Acids Research, Vol. 18, pp. 6097-6100,
1990.

Examples 1 Get a series of aligned sequences.

S = {'ATTATAGCAAACTA',...
'AACATGCCAAAGTA',...
'ATCATGCAAAAGGA'}

2 Display the sequence logo.

seqlogo(S)

MATLAB draws a figure.

2-342

seqlogo

3 Notice that correction for small samples prevents you from seeing
columns with information equal to log2(4) = 2 bits, but you can
turn this adjustment off.

seqlogo(S,'sscorrection',false)

???LI: you have to explain this in more detail to me someday???

See Also Bioinformatics Toolbox functions seqconsensus, seqdisp, seqprofile

2-343

seqmatch

Purpose Find matches for every string in a library

Syntax Index = seqmatch(Strings, Library)

Description Index = seqmatch(Strings, Library) looks through the elements of
Library to find strings that begin with every string in Strings. Index
contains the index to the first occurrence for every string in the query.
Strings and Library must be cell arrays of strings.

Examples lib = {'VIPS_HUMAN', 'SCCR_RABIT', 'CALR_PIG' ,'VIPR_RAT', 'PACR_MOUSE'};
query = {'CALR','VIP'};
h = seqmatch(query,lib);
lib(h)

See Also MATLAB functions strmatch, regexpi

2-344

seqneighjoin

Purpose Neighbor-joining method for phylogenetic tree reconstruction

Syntax Tree = seqneighjoin(Dist)
Tree = seqneighjoin(Dist, Method)
Tree = seqneighjoin(Dist, Method, Names)
seqneighjoin(..., 'PropertyName', PropertyValue,...)
seqneighjoin(..., 'Reroot', RerootValue)

Arguments
Dist Matrix or vector returned by the function seqpdist

Method Method to compute the distances between nodes. Enter
'equivar' (default), 'firstorder', or 'average'.

Names Vector of structures with the fields 'Header', 'Name',
or a cell array of strings. In all cases the number of
elements must equal the number of samples used to
generate the pairwise distances in Dist.

Description Tree = seqneighjoin(Dist) computes a phylogenetic tree object from
pairwise distances (Dist) between the species or products using the
neighbor-joining method.

Tree = seqneighjoin(Dist, Method) selects a method (Method) to
compute the distances of the new nodes to all other nodes at every
iteration. The general expression to calculate the distances between the
new node (n), after joining i and j and all other nodes (k), is given by

D(n,k) = a*D(i,k) + (1-a)*D(j,k) - a*D(n,i) - (1-a)*D(n,j)

This expression is guaranteed to find the correct tree with additive
data (minimum variance reduction).

The following table describes the values for Method.

2-345

seqneighjoin

'equivar'
(default)

Assumes equal variance and independence of
evolutionary distance estimates (a = 1/2). Such as
in Studier and Keppler, JMBE (1988).

'firstorder' Assumes a first-order model of the variances and
covariances of evolutionary distance estimates, 'a'
is adjusted at every iteration to a value between 0
and 1. Such as in Gascuel, JMBE (1997).

'average' New distances are the weighted average of previous
distances while the branch distances are ignored.

D(n,k) = [D(i,k) + D(j,k)] /2

As in the original neighbor-joining algorithm by
Saitou and Nei, JMBE (1987).

Tree = seqneighjoin(Dist, Method, Names) passes a list of names
(Names) to label the leaf nodes (e.g., species or products) in the
phylogenetic tree object.

seqneighjoin(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqneighjoin(..., 'Reroot', RerootValue), when RerootValue is
false, excludes rerooting the resulting tree. This is useful for observing
the original linkage order followed by the algorithm. By default
seqneighjoin reroots the resulting tree using the midpoint method.

References [1] [1] Saitou N, Nei M, “The neighbor-joining method: a new method for
reconstructing phylogenetic trees” in Mol Biol Evol. (1987) 4(4):406-25.

[2] [2] Gascuel O, “BIONJ: An improved version of the NJ algorithm
based on a simple model of sequence data” in Mol. Biol. Evol. (1997)
14:685-695.

[3] [3] Studier JA, Keppler KJ, “A note on the neighbor-joining
algorithm of Saitou and Nei” in Mol Biol Evol. (1988) 5(6):729-31.

2-346

seqneighjoin

Examples 1 Load a multiple alignment of amino acids.

seqs = fastaread('pf00002.fa');

2 Measure the Jukes-Cantor pairwise distances.

dist = seqpdist(seqs,'method','jukes-cantor','indels','pair');

3 Build the phylogenetic using the neighbor-joining algorithm .

tree = seqneighjoin(dist,'equivar',seqs)
view(tree)

See Also Bioinformatics Toolbox function multialign.

Phylogenetic tree tool functions seqlinkage (alternative method to
create a phylogenetic tree) and seqpdist.

Phylogenetic tree object methods phytree (object constructor), reroot,
and view

2-347

seqpdist

Purpose Calculate pairwise distance between sequences

Syntax D = seqpdist(Seqs,'PropertyName', PropertyValue ...)

seqpdist(..., 'Method', MethodValue)
seqpdist(..., 'Indels', IndelsValue)
seqpdist(..., 'Optargs', OptargsValue)
seqpdist(..., 'PairwiseAlignment',PairwiseAlignmentValue)
seqpdist(..., 'Squareform', SquareformValue)
seqpdist(..., 'Alphabet', AlphabetValue)

seqpdist(..., 'ScoringMatrix', ScoringMatrixValue)
seqpdist(..., 'Scale', ScaleValue
seqpdist(..., 'GapOpen', GapOpenValue)
seqpdist(..., 'ExtendGap', ExtendGapValue)

Arguments
Seqs Cell array with nucleotide or amino acid

sequences.

Method Property to select the method for calculating
pairwise distances.

Indels Property to indicate treatment of gaps.

Optargs Property to pass required arguments by the
distance method selected with the property
Method.

PairwiseAlignment Property to force pairwise alignment.

SquareForm Property to control formatting the output as a
square or triangular matrix.

Alphabet Property to select an alphabet. Enter either
'NT' for nucleotides or 'AA' for amino acids.

ScoringMatrix Property to select a scoring matrix for
pairwise alignment.

2-348

seqpdist

Scale Property to select a scale factor for the scoring
matrix.

GapOpen Property to select a gap penalty.

ExtendedGap Property to select a penalty for extending a
gap.

Description D = seqpdist(Seqs, 'PropertyName', PropertyValue ...) returns
a vector D containing biological distances between each pair of sequences
stored in the M elements of the cell Seqs.

D is an 1-by-(M*(M-1)/2) row vector corresponding to the M*(M-1)/2
pairs of sequences in Seqs. The output D is arranged in the order
((2,1),(3,1),..., (M,1),(3,2),...(M,2),.....(M,M-1)). This is
the lower left triangle of the full M-by-M distance matrix. To get the
distance between the Ith and the Jth sequences for I > J, use the
formula D((J-1)*(M-J/2)+I-J). Seqs can also be a vector of structures
with the field Sequence or a matrix of chars.

seqpdist(..., 'Method', MethodValue) selects a method
(MethodValue) to compute distances between every pair of sequences.

Distances defined for both nucleotides and amino acids:

'p-distance' Proportion of sites at which the two
sequences are different. p —> 1 for
poorly related and p —> 0 for similar
sequences.

'Jukes-Cantor' (default) Maximum likelihood estimate of the
number of substitutions between two
sequences. For NT d = -3/4 log(1p *
4/3)

AA d = -19/20 log(1p * 20/19)

'alignment-score' Distance (d) between two sequences (1
and 2) is computed from the pairwise
alignment score (s) as follows:

2-349

seqpdist

d(1,2) = (1-s(1,2)/s(1,1))
* (1-s(1,2)/s(2,2))

This option does not imply that
prealigned input sequences will be
realigned, it only scores them. Use with
care; this distance method does not
comply with the ultrametric condition.
In the rare case where s(x,y)>s(x,x),
then d(x,y)=0.

Distances defined only for nucleotides and no scoring of gaps:

'Tajima-Nei' Maximum likelihood estimate
considering the background nucleotide
frequencies. It can be computed from
the input sequences or given by setting
'OPTARGS' to [gA gC gG gT].

'Kimura' Considers separately the transitional
and transversion nucleotide substitution.

'Tamura' Considers separately the transitional
and transversion nucleotide substitution
and the GC content. GC content can be
computed from the input sequences or
given by setting 'OPTARGS'.

2-350

seqpdist

'Hasegawa' Considers separately the transitional and
transversional nucleotide substitution
and the background nucleotide
frequencies. Background frequencies can
be computed from the input sequences
or given by setting 'OPTARGS' to [gA gC
gG gT].

'Nei-Tamura' Considers separately the transitional
substitution between purines, the
transitional substitution between
pyramidines and the transversional
substitution and the background
nucleotide frequencies. Background
frequencies can be computed from the
input sequences or given by setting
'OPTARGS' to [gA gC gG gT].

Distances defined only for amino acids and no scoring of gaps:

'Poisson' Asumes that the number of amino acid
substitutions at each site has a Poisson
distribution.

'Gamma' Assumes that the number of amino acid
substitutions at each site has a Gamma
distribution with parameter 'a'. 'a' can be
set by 'OPTARGS'. The default value is 2.

A user defined distance function can also be specified using @, for
example, @distfun, the distance function must be of the form:

function D = distfun(S1, S2, OPTARGS)

Taking as arguments two same-length sequences (NT or AA) plus zero
or more additional problem-dependent arguments in OPTARGS, and
returning a scalar that represents the distance between S1 and S2.

2-351

seqpdist

seqpdist(..., 'Indels', IndelsValue) indicates how to treat sites
with gaps. Options are

• 'score' (default) — Scores these sites either as a point mutation or
with the alignment parameters depending on the method selected.

• 'pairwise-del' — For every pairwise comparison it ignores the
sites with gaps.

• 'complete-del' — Ignores all the columns in the multiple alignment
that contain a gap, this option is available only if a multiple
alignment was provided at the input Seqs.

seqpdist(..., 'Optargs', OptargsValue) some distance methods
require or accept optional arguments. Use a cell array to pass more
than one input argument (for example, The nucleotide frequencies in
the Tajima-Nei distance function can be specified instead of computing
them from the input sequences).

seqpdist(..., 'PairwiseAlignment', PairwiseAlignmentValue),
when PairwiseAlignment is true, ignores multiple alignment of the
input sequences (if any) and forces a pairwise alignment of input
sequences. If the input sequences are not prealigned, this flag is set
automatically. Pairwise alignment can be slow for a large number of
sequences. The default value is false.

seqpdist(..., 'Squareform', SquareformValue), when SquareForm
is true, converts the output into a square formatted matrix so the
D(I,J) denotes the distance between the Ith and Jth sequences.
The output matrix is symmetric and has a zero diagonal. Setting
the property Squareform to true is the same as using the function
squareform in the Statistical Toolbox.

seqpdist(..., 'Alphabet', AlphabetValue) specifies whether the
sequences are amino acids ('AA') or nucleotides ('NT'). The default
value is 'AA'.

The remaining input properties are analogous to the function nwalign
and are used when the property PairwiseAlignment = true or the

2-352

seqpdist

property Method = 'alignment-score'. For more information about
these properties, see nwalign.

seqpdist(..., 'ScoringMatrix', ScoringMatrixValue) specifies
the scoring matrix to be used for the alignment. The default value is
BLOSUM50 for AA and NUC44 for NT.

seqpdist(..., 'Scale', ScaleValue) indicates the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix info also provides a scale factor, then both are used.

seqpdist(..., GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment. The default gap open penalty is 8.

seqpdist(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

Examples % Load a multiple alignment of amino acids:
seqs = fastaread('pf00002.fa');

% For every possible pair of sequences in the multiple
% alignment removes sites with gaps and scores with the
% substitution matrix PAM250:

dist = seqpdist(seqs,'method','alignment-score',...
'indels','pairwise-delete',...
'scoringmatrix','pam250')

% To force the realignment of every pair of sequences
% ignoring the provided multiple alignment:

dist = seqpdist(seqs,'method','alignment-score',...
'indels','pairwise-delete',...
'scoringmatrix','pam250',...
'pairwisealignment',true)

% To measure the 'Jukes-Cantor' pairwise distances after
% realigning every pair of sequences, counting the gaps as

2-353

seqpdist

% point mutations:

dist = seqpdist(seqs,'method','jukes-cantor',...
'indels','score',...
'scoringmatrix','pam250',...
'pairwisealignment',true)

See Also Bioinformatics Toolbox functions fastaread, dnds, dndsml, seqlinkage,
and phytree methods phytree, pdist

2-354

seqprofile

Purpose Calculate a sequence profile from a set of multiply aligned sequences

Syntax Profile = seqprofile(Seqs,
'PropertyName', PropertyValue ...)

[Profile, Symbols] = seqprofile(Seqs)

seqprofile(..., 'Alphabet', AlphabetValue)
seqprofile(..., 'Counts', CountsValue)
seqprofile(..., 'Gaps', GapsValue)
seqprofile(..., 'Ambiguous', AmbiguousValue)
seqprofile(..., 'Limits', LimitsValue)

Arguments
Seqs Set of multiply aligned sequences. Enter an

array of strings, cell array of strings, or an
array of structures with the field Sequence.

Alphabet Sequence alphabet. Enter 'NT' (nucleotides),
'AA' (amino acids), or 'none'. The default
alphabet is 'AA'.

When Alphabet is 'none', the symbol list
is based on the observed symbols. Every
character can be a symbol except for a hyphen
(-) and a period (.), which are reserved for gaps.

Count Property to control returning frequency (ratio
of counts/total counts) or counts. Enter either
true (counts) or false (frequency). The default
value is false.

Gaps Property to control counting gaps in a sequence.
Enter 'all' (counts all gaps), 'noflanks'
(counts all gaps except those at the flanks of
every sequence), or 'none'. The default value
is 'none'.

2-355

seqprofile

Ambiguous Property to control counting ambiguous
symbols. Enter 'Count' to add partial counts
to the standard symbols.

Limits Property to specify using part of the sequences.
Enter a [1x2] vector with the first position and
the last position to include in the profile. The
default value is [1,SeqLength].

Description Profile = seqprofile(Seqs, 'PropertyName', PropertyValue ...)
returns a matrix (Profile) of size [20 (or 4) x SequenceLength]
with the frequency of amino acids (or nucleotides) for every column in
the multiple alignment. The order of the rows is given by

• 4 nucleotides — A C G T/U

• 20 amino acids — A R N D C Q E G H I L K M F P S T W Y V

[Profile, Symbols] = seqprofile(Seqs) returns a unique symbol
list (Symbols) where every symbol in the list corresponds to a row in
the profile (Profile).

seqprofile(..., 'Alphabet', AlphabetValue) selects a nucleotide
alphabet, amino acid alphabet, or no alphabet.

seqprofile(..., 'Counts', CountsValue) when Counts is true,
returns the counts instead of the frequency.

seqprofile(..., 'Gaps', GapsValue) appends a row to the bottom
of a profile (Profile) with the count for gaps.

seqprofile(..., 'Ambiguous', AmbiguousValue), when Ambiguous
is 'count', counts the ambiguous amino acid symbols (B Z X) and
nucleotide symbols (R Y K M S W B D H V N) with the standard
symbols. For example, the amino acid X adds a 1/20 count to every row
while the amino acid B counts as 1/2 at the D and N rows.

seqprofile(..., 'Limits', LimitsValue) specifies the start and end
positions for the profile relative to the indices of the multiple alignment.

2-356

seqprofile

Examples seqs = fastaread('pf00002.fa');
[P,S] = seqprofile(seqs,'limits',[50 60],'gaps','all')

See Also Bioinformatics Toolbox functions fastaread, , , seqdisp, seqlogo

2-357

seqrcomplement

Purpose Calculate reverse complement of a nucleotide sequence

Syntax SeqRC = seqrcomplement(SeqNT)

Arguments
SeqNT Nucleotide sequence. Enter either a character string

with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

Description seqrcomplement calculates the reverse complementary strand of a
DNA sequence.

SeqRC = seqrcomplement(SeqNT) calculates the reverse complementary
strand 3' –> 5' (A–>T, C–>G, G–>C, T–>A) for a DNA sequence and
returns a sequence in the same format as SeqNT. For example, if SeqNT
is an integer sequence then so is SeqRC.

Examples Reverse a DNA nucleotide sequence and then return its complement.

s = 'ATCG'
seqrcomplement(s)

ans =
CGAT

See Also Bioinformatics Toolbox functions codoncount, palindromes
seqcomplement, seqreverse, seqtool

2-358

seqreverse

Purpose Reverse the letters or numbers in a nucleotide sequence

Syntax SeqR = seqreverse(SeqNT)

Arguments
SeqNT Enter a nucleotide sequence. Enter either a character

string with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

SeqR Returns a sequence in the same format as the nucleotide
sequence. For example, if SeqNT is an integer sequence,
then so is SeqR.

Description seqreverse calculates the reverse strand of a DNA or RNA sequence.

SeqR = seqreverse(SeqNT) calculates the reverse strand 3’ –> 5’ of
the nucleotide sequence.

Examples Reverse a nucleotide sequence.

s = 'ATCG'
seqreverse(s)

ans =
GCTA

See Also Bioinformatics Toolbox functions seqcomplement, seqrcomplement,
seqtool

MATLAB function fliplr

2-359

seqshoworfs

Purpose Display open reading frames in a sequence

Syntax seqshoworfs(SeqNT, 'PropertyName', PropertyValue)

seqshoworfs(..., 'Frames', FramesValue)
seqshoworfs(..., 'GeneticCode', GeneticCodeValue)
seqshoworfs(..., 'MinimumLength', MinimumLengthValue)
seqshoworfs(..., 'AlternativeStartCodons', StartCodonsValue)
seqshoworfs(..., 'Color', ColorValue)
seqshoworfs(..., 'Columns', ColumnsValue)

Arguments
SeqNT Nucleotide sequence. Enter either a

character string with the characters A, T
(U), G, C, and ambiguous characters R, Y, K,
M, S, W, B, D, H, V, N, or a vector of integers.
You can also enter a structure with the field
Sequence.

FramesValue Property to select the frame. Enter 1, 2, 3,
-1, -2, -3, enter a vector with integers, or
'all'. The default value is the vector [1 2
3]. Frames -1, -2, and -3 correspond to the
first, second, and third reading frames for
the reverse complement.

GeneticCodeValue Genetic code name. Enter a code number or
a code name from the table geneticcode.

MinimumLengthValue Property to set the minimum number of
codons in an ORF.

StartCodonsValue Property to control using alternative start
codons. Enter either true or false. The
default value is false.

2-360

seqshoworfs

ColorValue Property to select the color for highlighting
the reading frame. Enter either a 1-by-3
RGB vector specifying the intensity (0 to
255) of the red, green, and blue components
of the color, or a character from the following
list: 'b'—blue, 'g'—green, 'r'—red,
'c'—cyan, 'm'—magenta, or 'y'—yellow.

To specify different colors for the three
reading frames, use a 1-by-3 cell array of
color values. If you are displaying reverse
complement reading frames, then COLOR
should be a 1-by-6 cell array of color values.

ColumnsValue Property to specify the number of columns
in the output.

Description seqshoworfs identifies and highlights all open reading frames using the
standard or an alternative genetic code.

seqshoworfs(SeqNT) displays the sequence with all open reading
frames highlighted, and it returns a structure of start and stop positions
for each ORF in each reading frame. The standard genetic code is used
with start codon 'AUG' and stop codons 'UAA', 'UAG', and 'UGA'.

seqshoworfs(..., 'Frames', FramesValue) specifies the reading
frames to display. The default is to display the first, second, and third
reading frames with ORFs highlighted in each frame.

seqshoworfs(..., 'GeneticCode', GeneticCodeValue) specifies the
genetic code to use for finding open reading frames.

seqshoworfs(..., 'MinimumLength', MinimumLengthValue) sets the
minimum number of codons for an ORF to be considered valid. The
default value is 10.

seqshoworfs(..., 'AlternativeStartCodons', StartCodonsValue)
uses alternative start codons if AlternativeStartCodons is set to true.
For example, in the human mitochondrial genetic code, AUA and AUU are

2-361

seqshoworfs

known to be alternative start codons. For more details of alternative
start codons, see

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/
wprintgc.cgi?mode=t#SG1

seqshoworfs(..., 'Color', ColorValue) selects the color used to
highlight the open reading frames in the output display. The default
color scheme is blue for the first reading frame, red for the second, and
green for the third frame.

seqshoworfs(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output. The default value is 64.

Examples Look for the open reading frames in a random nucleotide sequence.

s = randseq(200,'alphabet', 'dna');
seqshoworfs(s);

Identify the open reading frames in a GenBank sequence.

HLA_DQB1 = getgenbank('NM_002123');
seqshoworfs(HLA_DQB1.Sequence);

See Also Bioinformatics Toolbox functions codoncount, geneticcode,
seqdisp,seqshowwords, seqwordcount, cpgisland, seqtool

MATLAB function regexp

2-362

seqshowwords

Purpose Graphically display the words in a sequence

Syntax seqshowwords(Seq, Word)
seqshowwords(..., 'PropertyName', PropertyValue,...)
seqshowwords(..., 'Color', ColorValue)
seqshowwords(..., 'Columns', ColumnsValue)
seqshowwords(..., 'Alphabet', AlphabetValue)

Arguments
Seq Enter either a nucleotide or amino acid sequence.

You can also enter a structure with the field
Sequence.

Word Enter a short character sequence.

ColorValue Property to select the color for highlighted
characters. Enter a 1-by-3 RGB vector specifying
the intensity (0255) of the red, green, and blue
components, or enter a character from the following
list: 'b'– blue, 'g'– green, 'r'– red, 'c'– cyan,
'm'– magenta, or 'y'– yellow.

The default color is red 'r'.

ColumnsValue Property to specify the number of characters in a
line. Default value is 64.

AlphabetValue Property to select the alphabet. Enter 'AA' for
amino acid sequences or 'NT' for nucleotide
sequences. The default is 'NT'.

Description seqshowwords(Seq, Word) displays the sequence with all occurrences
of a word highlighted, and returns a structure with the start and stop
positions for all occurrences of the word in the sequence.

seqshowwords(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqshowwords(..., 'Color', ColorValue) selects the color used to
highlight the words in the output display.

2-363

seqshowwords

seqshowwords(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output.

seqshowwords(..., 'Alphabet', AlphabetValue) selects the alphabet
for the sequence (Seq) and the word (Word).

If the search work (Word) contains nucleotide or amino acid symbols
that represent multiple possible symbols, then seqshowwords shows all
matches. For example, the symbol R represents either G or A (purines).
If Word is 'ART', then seqshowwords shows occurrences of both 'AAT'
and 'AGT'.

Examples This example shows two matches, ’TAGT' and 'TAAT', for the word
'BART'.

seqshowwords('GCTAGTAACGTATATATAAT','BART')

ans =
Start: [3 17]
Stop: [6 20]

000001 GCTAGTAACGTATATATAAT

seqshowwords does not highlight overlapping patterns multiple times.
This example highlights two places, the first occurrence of 'TATA’
and the 'TATATATA' immediately after 'CG'. The final 'TA' is not
highlighted because the preceding 'TA' is part of an already matched
pattern.

seqshowwords('GCTATAACGTATATATATA','TATA')

ans =
Start: [3 10 14]
Stop: [6 13 17]

000001 GCTATAACGTATATATATA

2-364

seqshowwords

To highlight all multiple repeats of TA, use the regular expression
'TA(TA)*TA'.

seqshowwords('GCTATAACGTATATATATA','TA(TA)*TA')

ans =
Start: [3 10]
Stop: [6 19]

000001 GCTATAACGTATATATATA

See Also Bioinformatics Toolbox functions palindromes, cleave,, seqdisp,
seqtool, seqwordcount

MATLAB functions strfind, regexp

2-365

seqtool

Purpose Open interactive tool to explore biological sequences

Syntax seqtool(Seq)
seqtool(..., 'PropertyName', PropertyValue,...)
seqtool(..., 'Alphabet', AlphabetValue)

Arguments
Seq Struct with a field Sequence, a character array, or a

filename with an extension of .gbk, .gpt, .fasta, .fa, or .ebi

Description seqtool(Seq) loads a sequence (Seq) into the seqtool GUI.

seqtool(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

seqtool(..., 'Alphabet', AlphabetValue) specifies an alphabet
(AlphabetValue) for the sequence (Seq). The default value is
'AMINO'except when all of the symbols in the sequence are in A, C, G, T,
or -, then AlphabetValue is set to 'NT'. Use ’AMINO’ when you want to
force an amino acid sequence alphabet.

Example S = getgenbank('M10051')
seqtool(S)

See Also aa2nt, aacount, aminolookup, basecount, baselookup, dimercount,
emblread, fastaread, fastawrite, genbankread, geneticcode,
genpeptread, getembl, getgenbank, getgenpept, nt2aa, proteinplot,
seqcomplement, seqdisp, seqrcomplement, seqreverse, seqshoworfs,
seqshowwords, seqwordcount

2-366

seqwordcount

Purpose Count the number of occurrences of a word in a sequence

Syntax seqwordcount(Seq, Word)

Arguments
Seq Enter a nucleotide or amino acid sequence of characters.

You can also enter a structure with the field Sequence.

Word Enter a short sequence of characters.

Description seqwordcount(Seq, Word) counts the number of times that a word
appears in a sequence, and then returns the number of occurrences of
that word.

If Word contains nucleotide or amino acid symbols that represent
multiple possible symbols (ambiguous characters), then seqwordcount
counts all matches. For example, the symbol R represents either
G or A (purines). For another example, if word equals 'ART', then
seqwordcount counts occurrences of both 'AAT' and 'AGT'.

Examples seqwordcount does not count overlapping patterns multiple times. In
the following example, seqwordcount reports three matches. TATATATA
is counted as two distinct matches, not three overlapping occurrences.

seqwordcount('GCTATAACGTATATATAT','TATA')

ans =
3

The following example reports two matches ('TAGT' and 'TAAT'). B
is the ambiguous code for G, T, or C, while R is an ambiguous code for
G and A.

seqwordcount('GCTAGTAACGTATATATAAT','BART')

ans =
2

2-367

seqwordcount

See Also Bioinformatics Toolbox functions codoncount, seqshoworfs,
seqshowwords, seqtool, seq2regexp

MATLAB functions strfind

2-368

showalignment

Purpose Display a sequence alignment with color

Syntax showalignment(Alignment)
showalignment(..., 'PropertyName', PropertyValue,...)
showalignment(..., 'MatchColor', MatchColorValue)
showalignment(..., 'SimilarColor' SimilarColorValue)
showalignment(..., 'StartPointers', StartPointersValue)
showalignment(..., 'Columns', ColumnsValue)

Arguments
Alignment For pairwise alignments, matches and

similar residues are highlighted and
Alignment is the output from one of
the functions nwalign or swalign. For
multiple sequence alignment highly
conserved columns are highlighted and
Alignment is the output from the function
multialign.

MatchColorValue Property to select the color to highlight
matching characters. Enter a 1-by-N RGB
vector specifying the intensity (0 to 255) of
the red, green, and blue components, or
enter a character from the following list:
'b'– blue, 'g'– green, 'r'– red, 'c'–
cyan, 'm'– magenta, or 'y'– yellow.

The default color is red, 'r'.

SimilarColorValue Property to select the color to highlight
similar characters. Enter a 1-by-3 RGB
vector or color character. The default color
is magenta.

2-369

showalignment

StarterPointersValue Property to specify the starting indices of
the aligned sequences. StartPointers is
the two element vector returned as the
third output of the function swalign.

ColumnsValue Property to specify the number of
characters in a line. Enter the number
of characters to display in one row. The
default value is 64.

Description showalignment(Alignment) displays an alignment in a MATLAB figure
window.

showalignment(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

showalignment(..., 'MatchColor', MatchColorValue) selects the
color to highlight the matches in the output display. The default color is
red. For example, to use cyan, enter 'c' or [0 255 255].

showalignment(..., 'SimilarColor' SimilarColorValue) selects
the color to highlight similar residues that are not exact matches. The
default color is magenta.

The following options are only available when showing pairwise
alignments:

showalignment(..., 'StartPointers', StartPointersValue)
specifies the starting indices in the original sequences of a local
alignment.

showalignment(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output, and labels the start of each row
with the sequence positions.

Examples Enter two amino acid sequences and show their alignment.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD');
showalignment(Alignment);

2-370

showalignment

Enter a multiplyaligned set of sequences and show their alignment.

gag = multialignread('aagag.aln');
showalignment(gag)

See Also Bioinformatics Toolbox functions nwalign, swalign

2-371

showhmmprof

Purpose Plot an Hidden Markov Model (HMM) profile

Syntax showhmmprof(Model)
showhmmprof(..., 'PropertyName', PropertyValue,...)
showhmmprof(..., 'Scale', ScaleValue)
showhmmprof(..., 'Order', OrderValue)

Arguments
Model Hidden Markov model created with the functions

gethmmprof and pfamhmmread functions.

ScaleValue Property to select a probability scale. Enter one of the
following values:

'logprob' — Log probabilities

'prob' — Probabilities

'logodds' — Log-odd ratios

OrderValue Property to specify the order of the alphabet. Enter a
character string with the

Description showhmmprof(Model) plots a profile hidden Markov model described by
the structure Model.

showhmmprof(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

showhmmprof(..., 'Scale', ScaleValue) specifies the scale to
use. If log probabilities (ScaleValue='logprob'), probabilities
(ScaleValue='prob'), or log-odd ratios (ScaleValue='logodds'). To
compute the log-odd ratios, the null model probabilities are used for
symbol emission and equally distributed transitions are used for the
null transition probabilities. The default ScaleValue is 'logprob'.

showhmmprof(..., 'Order', OrderValue) specifies the order in which
the symbols are arranged along the vertical axis. This option allows
you reorder the alphabet and group the symbols according to their
properties.

2-372

showhmmprof

Examples 1 Load a model example.

model = pfamhmmread('pf00002.ls')

2 Plot the profile.

showhmmprof(model, 'Scale', 'logodds')

3 Order the alphabet by hydrophobicity.

hydrophobic = 'IVLFCMAGTSWYPHNDQEKR'

4 Plot the profile.

showhmmprof(model, 'Order', 'hydrophobic')

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofstruct, pfamhmmread

2-373

sptread

Purpose Read data from a SPOT file

Syntax SPOTData = sptread('File',
'PropertyName', PropertyValue)

sptread(..., 'CleanColNames, 'CleanColNamesValues')

Arguments
File SPOT formatted file (ASCII text file).

Enter a filename, a path and filename, or
URL pointing to a file. File can also be
a MATLAB character array that contains
the text for a SPOT file.

CleanColNamesValue Property to control using valid MATLAB
variable names.

Description SPOTData = sptread('File') reads a SPOT formatted file and creates
a MATLAB structure SPOTData containing the following fields:

Header
Data
Blocks
Columns
Rows
IDs
ColumnNames
Indices
Shape

sptread(..., 'CleanColNames, CleanColNamesValue) The column
names in the SPOT file contain periods and some characters that
cannot be used in MATLAB variable names. If you plan to use the
column names as variable names in a function, use this option with
CleanColNames set to true and the function will return the field
ColumnNames with valid variable names.

2-374

sptread

The Indices field of the structure includes the MATLAB indices that
you can use for plotting heat maps of the data.

Examples % Read in a sample SPOT file and plot the median foreground
% intensity for the 635 nm channel.
spotStruct = sptread('spotdata.txt')
maimage(spotStruct,'Rmedian');

% Alternatively, create a similar plot using
% more basic graphics commands.

rmedCol = find(strcmp(spotStruct.ColumnNames,'Rmedian'));
Rmedian = spotStruct.Data(:,rmedCol);
imagesc(Rmedian(spotStruct.Indices));
colormap bone
colorbar

See Also Bioinformatics Toolbox functions affyread, geosoftread, imageneread,
maboxplot, gprread

2-375

subtree (phytree)

Purpose Extract a subtree

Syntax Tree2 = subtree(Tree1, Nodes)

Description Tree2 = subtree(Tree1, Nodes) extracts a new subtree (Tree2) where
the new root is the first common ancestor of the Nodes vector from Tree1.
Nodes in the tree are indexed as [1:NUMLEAVES] for the leaves and as
[NUMLEAVES+1:NUMLEAVES+NUMBRANCHES] for the branches. Nodes can
also be a logical array of following sizes [NUMLEAVES+NUMBRANCHES x
1], [NUMLEAVES x 1] or [NUMBRANCHES x 1].

Examples 1 Load a phylogenetic tree created from a protein family.

tr = phytreeread('pf00002.tree')

2 Get the subtree that contains the VIPS and CGRR human proteins.

sel = getbyname(tr,{'vips_human','cgrr_human'});
sel = any(sel,2);
tr = subtree(tr,sel)
view(tr);

See Also Bioinformatics Toolbox methods for a phylogenetic tree object phytree,
prune, select, get, getbyname

2-376

svmclassify

Purpose Classify data using a support vector machine

Syntax Group = svmclassify(SVMStruct, Sample, 'PropertyName',
PropertyValue...)
svmclassify(..., 'Showplot', ShowplotValue)

Description Group = svmclassify(SVMStruct, Sample, 'PropertyName',
PropertyValue...) classifies each row of the data in Sample using the
information in a support vector machine classifier structure SVMStruct,
created using svmtrain. Sample must have the same number of columns
as the data used to train the classifier in svmtrain. Group indicates the
group to which each row of Sample has been assigned.

svmclassify(..., 'Showplot', ShowplotValue) when Showplot is
true, plots thesample data on the figure created using the showplot
option in svmtrain.

Example % Load the data and select features for classification
load fisheriris
data = [meas(:,1), meas(:,2)];
% Extract the Setosa class
groups = ismember(species,'setosa');
% Randomly select training and test sets
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
% Use a linear support vector machine classifier
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
classes = svmclassify(svmStruct,data(test,:),'showplot',true);
% See how well the classifier performed
classperf(cp,classes,test);
cp.CorrectRate

This displays the following plot:

2-377

svmclassify

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5
0 (training)
0 (classified)
1 (training)
1 (classified)
Support Vectors

See Also Bioinformatics Toolbox functions knnclassify, classperf,
crossvalind, svmtrain

Statistical Toolbox functions classify, quadprog,

2-378

svmtrain

Purpose Train a support vector machine classifier

Syntax SVMStruct = svmtrain(Training, group)
svmtrain(...,'kernel_function',kfun)
svmtrain(..., 'polyorder', order)
svmtrain(...,'mlp_params',[p1 p2])
svmtrain(...,'method',method)
svmtrain(..., 'quadprog_opts',options)
svmtrain(..., 'showplot',true)

Description SVMStruct = svmtrain(Training, group) trains a support vector
machine classifier using data Training taken from two groups given by
group. SVMStruct contains information about the trained classifier that
is used by svmclassify for classification. group is a column vector of
values, of the same length as Training, that defines two groups. Each
element of group specifies the group to which the corresponding row of
Training belongs. group can be a numeric vector, a string array, or a
cell array of strings. svmtrain treats NaNs or empty strings in group as
missing values, and ignores the corresponding rows of Training.

svmtrain(...,'kernel_function',kfun) specifies the kernel function
kfun that is used to map the training data into kernel space. The
default kernel function is the dot product. kfun can be one of the
following strings or a function handle:

'linear' Linear kernel or dot product

'quadratic' Quadratic kernel

'polynomial' Polynomial kernel (default order 3)

'rbf' Gaussian radial basis function kernel

'mlp' Multilayer perceptron kernel (default scale 1)

Function handle A handle to a kernel function specified using @, for
example @kfun, or an anonymous function

A kernel function must be of the form

2-379

svmtrain

function K = kfun(U, V)

The returned value K is a matrix of size m-by-n, where U and V have
m and n rows respectively. If kfun is parameterized, you can use
anonymous functions to capture the problem-dependent parameters.
For example, suppose that your kernel function is

function k = kfun(u,v,p1,p2)
k = tanh(p1*(u*v')+p2);

You can set values for p1 and p2 and then use an anonymous function
as follows:

@(u,v) kfun(u,v,p1,p2)

svmtrain(..., 'polyorder', order)enables you to specify the order
of a polynomial kernel. The default order is 3.

svmtrain(...,'mlp_params',[p1 p2])enables you to specify the
parameters of the multilayer perceptron (mlp) kernel. The mlp kernel
requires two parameters, p1 and p2, where K = tanh(p1*U*V’ + p2), p1
> 0, and p2 < 0. Default values are p1 = 1 and p2 = -1.

svmtrain(...,'method',method)enables you to specify the method
used to find the separating hyperplane. The options are

'QP' Quadratic programming (requires the Optimization Toolbox)

'LS' Least-squares method

Note If you installed the Optimization Toolbox, the 'QP' method is the
default. If not, the only available method is 'LS'.

2-380

svmtrain

svmtrain(..., 'quadprog_opts',options)enables you to pass an
options structure, created using optimset, to the Optimization Toolbox
function quadprog when using the 'QP' method. See the optimset
reference page for more details.

svmtrain(..., 'showplot',true), when used with two-dimensional
data, creates a plot of the grouped data and plots the separating line
for the classifier.

Example Load sample data

load fisheriris
X = [meas(:,1), meas(:,2)];

Extract the Setosa class

groups = ismember(species,'setosa');

Randomly select training and test sets

[train, test] = crossvalind('holdOut',groups);

Use a linear support vector machine classifier

svmStruct = svmtrain(X(train,:),groups(train),'showplot',true);
classes = svmclassify(svmStruct,X(test,:),'showplot',true);

See Also Bioinformatics Toolbox knnclassify, svmclassify,

Statistical Toolbox functions classify,

Optimization Toolbox Function quadprog

2-381

swalign

Purpose Locally align two sequences using the Smith-Waterman algorithm

Syntax swalign(Seq1, Seq2)
[Score, Alignment] = swalign(Seq1, Seq2)
[Score, Alignment, Start] = swalign(Seq1, Seq2)
swalign(..., 'PropertyName', PropertyValue,...)
swalign(..., 'Alphabet', AlphabetValue)
swalign(..., 'ScoringMatrix', ScoringMatrixValue)
swalign(..., 'Scale', ScaleValue)
swalign(..., 'GapOpen', GapOpenValue)
swalign(..., 'ExtendGap', ExtendGapValue)
swalign(..., 'Showscore', ShowscoreValue)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences. Enter

a character string or vector of integers. You
can also enter a structure with the field
Sequence.

AlphabetValue Property to select an amino acid or
nucleotide sequences. Enter either 'AA' or
'NT'. The default value is 'AA'.

ScoringMatrixValue Property to select the scoring matrix.
Enter the name of a scoring matrix. Values
are 'PAM40’, 'PAM250', DAYHOFF, GONNET,
'BLOSUM30' increasing by 5 to 'BLOSUM90',
or 'BLOSUM62', or 'BLOSUM100'.

The default value when AlphabetValue
= 'aa' is 'BLOSUM50', while the default
value when AlphabeValue = 'nt' is nuc44.

ScaleValue Property to specify a scaling factor for a
scoring matrix.

GapOpenValue Property to specify the gap open penalty.
Enter an integer for the gap penalty. Default
value is 8.

2-382

swalign

ExtendGapValue Property to specify the extended gap open
penalty. Enter an integer for the extended
gap penalty. The default value equals the
GapOpen value.

ShowscoreValue Property to control displaying the scoring
space and the winning path. Enter either
true or false. The default value is false.

Description swalign(Seq1, Seq2) returns the alignment score in bits for the
optimal alignment. The scale factor used to calculate the score is
provided by the scoring matrix. If this is not defined, then swalign
returns the raw score.

[Score, Alignment] = swalign(Seq1, Seq2) returns a 3-by-n
character array showing the two sequences and the local alignment
between them. Amino acids that match are indicated with the symbol |,
while related amino acids (nonmatches with a positive scoring matrix
value) are indicated with the symbol :.

[Score, Alignment, Start] = swalign(Seq1, Seq2) returns a 2-by-1
vector with the starting point indices where the alignment begins for
each sequence.

swalign(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

swalign(..., 'Alphabet', AlphabetValue) specifies whether the
sequences are amino acids ('AA') or nucleotides ('NT'). The default
value is 'AA'.

swalign(..., 'ScoringMatrix', ScoringMatrixValue) specifies the
scoring matrix to use for the alignment. The default is 'blosum50' for
Alphabet = 'AA' or 'NUC44' for Alphabet = NT.

swalign(..., 'Scale', ScaleValue) indicates the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix also provides a scale factor, then both are used.

2-383

swalign

swalign(..., 'GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment. The default gap open penalty is 8.

swalign(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

swalign(..., 'Showscore', ShowscoreValue) displays the scoring
space and the winning path.

Scores are ’raw’ scores which mean the final score is an accumulation
of using the scoring matrix values at each position of the alignment.
Accumulation means that it is the sum of the amino acid matches
(including the gap penalties). If the provided scoring matrix (or the one
used by default) has a Scale entry, then the score is returned in ’bits’.

References [1] Durbin R. Eddy S, Krogh A, Mitchison G; Biological Sequence
Analysis. Cambridge University Press, 1998.

[2] Smith T, Waterman M.; “Identification of common molecular
subsequences” in Journal Molecular Biology; 1981, Vol. 147, pp.
195-197.

Examples Return the score in bits and the local alignment using the default
ScoringMatrix ('BLOSUM50') and default values for the GapOpen and
ExtendGap values.

[Score, Alignment] = swalign('VSPAGMASGYD','IPGKASYD')

Score =
8.6667

Alignment =
PAGMASGYD
| | || ||
P-GKAS-YD

2-384

swalign

Align two amino sequences using a specified scoring matrix ('pam250')
and a gap open penalty of 5.

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'ScoringMatrix', 'pam250',...
'GapOpen',5)

Score =
8

Alignment =
GAWGHE
:|| ||
PAW-HE

Align two amino sequences and return the Score in nat units (nats).

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'Scale',log(2))

Score =
6.4694

Alignment =
AWGHE
|| ||
AW-HE

See Also Bioinformatics Toolbox functions blosum, nt2aa, nwalign, pam,
seqdotplot, showalignment

2-385

traceplot

Purpose Draw nucleotide trace plots

Syntax traceplot(TraceStructure)
traceplot(A, C, G, T)
h = traceplot()

Description traceplot(TraceStructure) creates a trace plot from data in a
structure with fields A, C, G, T.

traceplot(A, C, G, T) creates a trace plot from data in vectors A,
C, G, T.

h = traceplot() returns a structure with the handles of the lines
corresponding to A, C, G, T.

Examples tstruct = scfread('sample.scf');
traceplot(tstruct)

See Also Bioinformatics Toolbox function scfread

2-386

view (biograph)

Purpose Draw figure from biograph object

Syntax view(BGobj)
BGobjHandle = view(BGobj)

Arguments
BGobj Biograph object.

Description view(BGobj) opens a figure window and draws a graph represented by
a biograph object (BGobj). When the biograph object is already drawn in
the figure window, this function only updates the graph properties.

BGobjHandle = view(BGobj) returns a handle to a deep copy of the
biograph object (BGobj) in the figure window. When updating an
existing figure, you can use the returned handle to change object
properties programmatically or from the command line. When you close
the figure window, the handle is no longer valid. The original biograph
object (BGobj) is left unchanged.

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Render the biograph object into a Handles Graphic figure and get
back a handle.

h = view(bg)

3 Change the color of all nodes and edges.

set(h.Nodes,'Color',[.5 .7 1])
set(h.Edges,'LineColor',[0 0 0])

See Also Bioinformatics Toolbox methods for the biograph object, biograph,
dolayout, getancestors, getdescendants, getedgesbynodeid,
getnodesbyid, getrelatives

2-387

view (phytree)

Purpose View phylogenetic tree

Syntax view(Tree)
view(Tree, IntNodes)

Arguments
Tree phytree object created with phytree (phytree).

IntNodes Nodes from the phytree object to initially display in
the Tree.

Description view(Tree) opens the Phylogenetic Tree Tool window and draws a
tree from data in a phytree object (Tree). The significant distances
between branches and nodes are in the horizontal direction. Vertical
distances have no significance and are selected only for display purposes.
You can access tools to edit and analyze the tree from the Phylogenetic
Tree Tool menu bar or by using the left and right mouse buttons.

view(Tree, IntNodes) opens the Phylogenetic Tree Tool window
with an initial selection of nodes specified by IntNodes. IntNodes can be
a logical array of any of the following sizes: NumLeaves + NumBranches
x 1, NumLeaves x 1, or NumBranches x 1. IntNodes can also be a list of
indices.

Example tr = phytreeread('pf00002.tree')
view(tree)

See Also Bioinformatics Toolbox functions dnds, phytreetool, seqlinkage,
seqneighjoin

phytree object methods phytree (phytree), plot (phytree)

2-388

weights (phytree)

Purpose Calculate weights for a phylogenetic tree

Syntax W = weights(Tree)

Description W = weights(Tree) calculates branch proportional weights for every
leaf in a tree (Tree) using the Thompson-Higgins-Gibson method. The
distance of every segment of the tree is adjusted by dividing it by the
number of leaves it contains. The sequence weights are the result of
normalizing to unity the new patristic distances between every leaf
and the root.

References [1] Thompson J.D, Higgins D.G, Gibson T.G, Nucleic Acids Res, (1994)
22(22):4673-4680.

[2] Henikoff S, Henikoff J.G, JMB, (1994) 243(4):574-578.

See Also multialign, phytree, profalign, seqlinkage

2-389

3

Properties — Alphabetical
List

3 Properties — Alphabetical List

3-2

Index

A
aa2int function

reference 2-2
aa2nt function

reference 2-4
aacount function

reference 2-9
affyread function

reference 2-13
aminolookup function

reference 2-14
atomiccomp function

reference 2-19

B
basecount function

reference 2-20
baselookup function

reference 2-24
biograph constructor

reference 2-27
blastncbi function

reference 2-33
blastread function

reference 2-38
blosum function

reference 2-40

C
classperf function

reference 2-42
cleave function

reference 2-46
clustergram function

reference 2-49 2-53
codonbias function

reference 2-57
codoncount function

reference 2-60
cpgisland function

reference 2-64
crossvalind function

reference 2-67

D
dayhoff function

reference 2-70
dimercount function

reference 2-71
dna2rna function

reference 2-73 to 2-74
dnds function

reference 2-77
dndsml function

reference 2-80
dolayout method

reference 2-75

E
emblread function

reference 2-82
exprprofrange function

reference 2-84
exprprofvar function

reference 2-85

F
fastaread function

reference 2-86
fastawrite function

reference 2-88
Functions

aa2int 2-2
aa2nt 2-4
aacount 2-9
affyread 2-13

Index-1

Index

aminolookup 2-14
atomiccomp 2-19
basecount 2-20
baselookup 2-24
biograph constructor 2-27
blastncbi 2-33
blastread 2-38
blosum 2-40
classperf 2-42
cleave 2-46
clustergram 2-49 2-53
codonbias 2-57
codoncount 2-60
cpgisland 2-64
crossvalind 2-67
dayhoff 2-70
dimercount 2-71
dna2rna 2-73 to 2-74
dnds 2-77
dndsml 2-80
emblread 2-82
exprprofrange 2-84
exprprofvar 2-85
fastaread 2-86
fastawrite 2-88
galread 2-90
genbankread 2-91
geneentropyfilter 2-93
genelowvalfilter 2-95
generangefilter 2-97
geneticcode 2-99
genevarfilter 2-101
genpeptread 2-103
geosoftread 2-105
getembl 2-121
getgenbank 2-123
getgenpept 2-126
getgeodata 2-128
gethmmalignment 2-130
gethmmprof 2-132

gethmmtree 2-134
getpdb 2-139
getpir 2-142
gonnet 2-146
gprread 2-147
hmmprofalign 2-149
hmmprofestimate 2-152
hmmprofgenerate 2-155
hmmprofmerge 2-157
hmmprofstruct 2-159
imageneread 2-165
int2aa 2-167
int2nt 2-169
isoelectric 2-172
jcampread 2-175
joinseq 2-177
knnclassify 2-178
knnimpute 2-184
maboxplot 2-187
maimage 2-189
mairplot 2-191
maloglog 2-193
malowess 2-195
manorm 2-197
mapcaplot 2-200
molweight 2-235
msalign 2-203
msbackadj 2-210
msheatmap 2-224
mslowess 2-215
msnorm 2-220
msresample 2-226
mssgolay 2-230
msviewer 2-232
multialign 2-236
multialignread 2-241
nmercount 2-243
nt2aa 2-244
nt2int 2-247
ntdensity 2-249

Index-2

Index

nuc44 2-251
nwalign 2-252
palindromes 2-255
pam 2-257
pdbdistplot 2-259
pdbplot 2-261
pdbread 2-264
pfamhmmread 2-268
phytree constructor 2-269
phytreeread 2-273
phytreetool 2-274
phytreewrite 2-275
pirread 2-277
probelibraryinfo 2-281
probesetlink 2-282
probesetlookup 2-284
probesetplot 2-285
probesetvalues 2-286
profalign 2-288
proteinplot 2-291
quantilenorm 2-296
ramachandran 2-297
randfeatures 2-299
randseq 2-302
rankfeatures 2-305
rebasecuts 2-309
redgreencmap 2-311
restrict 2-316
revgeneticcode 2-320
rna2dna 2-323
scfread 2-324
seq2regexp 2-329
seqcomplement 2-331
seqconsensus 2-332
seqdisp 2-334
seqdotplot 2-336
seqlinkage 2-338
seqlogo 2-340
seqmatch 2-344
seqneighjoin 2-345

seqpdist 2-348
seqprofile 2-355
seqrcomplement 2-358
seqreverse 2-359
seqshoworfs 2-360
seqshowwords 2-363
seqtool 2-366
seqwordcount 2-367
showalignment 2-369
showhmmprof 2-372
sptread 2-374
svmclassify 2-377
svmtrain 2-379
swalign 2-382
traceplot 2-386

G
galread function

reference 2-90
genbankread function

reference 2-91
geneentropyfilter function

reference 2-93
genelowvalfilter function

reference 2-95
generangefilter function

reference 2-97
geneticcode function

reference 2-99
genevarfilter function

reference 2-101
genpeptread function

reference 2-103
geosoftread function

reference 2-105
get method

reference 2-106
getancestors method

reference 2-108

Index-3

Index

getbyname method
reference 2-113

getcanonical method
reference 2-114

getdescendants method
reference 2-116

getedgesbynodeid method
reference 2-119

getembl function
reference 2-121

getgenbank function
reference 2-123

getgenpept function
reference 2-126

getgeodata function
reference 2-128

gethmmalignment function
reference 2-130

gethmmprof function
reference 2-132

gethmmtree function
reference 2-134

getnewickstr method
reference 2-136

getnodesbyid method
reference 2-138

getpdb function
reference 2-139

getpir function
reference 2-142

getrelatives method
reference 2-145

gonnet function
reference 2-146

gprread function
reference 2-147

H
hmmprofalign function

reference 2-149
hmmprofestimate function

reference 2-152
hmmprofgenerate function

reference 2-155
hmmprofmerge function

reference 2-157
hmmprofstruct function

reference 2-159

I
imageneread function

reference 2-165
int2aa function

reference 2-167
int2nt function

reference 2-169
isoelectric function

reference 2-172

J
jcampread function

reference 2-175
joinseq function

reference 2-177

K
knnclassify function

reference 2-178
knnimpute function

reference 2-184

M
maboxplot function

reference 2-187
maimage function

reference 2-189

Index-4

Index

mairplot function
reference 2-191

maloglog function
reference 2-193

malowess function
reference 2-195

manorm function
reference 2-197

mapcaplot function
reference 2-200

Methods
dolayout 2-75
get 2-106
getancestors 2-108
getbyname 2-113
getcanonical 2-114
getdescendants 2-116
getedgesbynodeid 2-119
getnewickstr 2-136
getnodesbyid 2-138
getrelatives 2-145
pdist 2-266
plot 2-279
prune 2-294
reroot 2-312
select 2-326
subtree 2-376
view (biograph) 2-387
view (phytree) 2-388
weights 2-389

molweight function
reference 2-235

msalign function
reference 2-203

msbackadj function
reference 2-210

msheatmap function
reference 2-224

mslowess function
reference 2-215

msnorm function
reference 2-220

msresample function
reference 2-226

mssgolay function
reference 2-230

msviewer function
reference 2-232

multialign function
reference 2-236

multialignread function
reference 2-241

N
nmercount function

reference 2-243
nt2aa function

reference 2-244
nt2int function

reference 2-247
ntdensity function

reference 2-249
nuc44 function

reference 2-251
nwalign function

reference 2-252

P
palindromes function

reference 2-255
pam function

reference 2-257
pdbdistplot function

reference 2-259
pdbplot function

reference 2-261
pdbread function

reference 2-264

Index-5

Index

pdist method
reference 2-266

pfamhmmread function
reference 2-268

phytree constructor
reference 2-269

phytreeread function
reference 2-273

phytreetool function
reference 2-274

phytreewrite function
reference 2-275

pirread function
reference 2-277

plot method
reference 2-279

probelibraryinfo function
reference 2-281

probesetlink function
reference 2-282

probesetlookup function
reference 2-284

probesetplot function
reference 2-285

probesetvalues function
reference 2-286

profalign function
reference 2-288

proteinplot function
reference 2-291

prune method
reference 2-294

Q
quantilenorm function

reference 2-296

R
ramachandran function

reference 2-297
randfeatures function

reference 2-299
randseq function

reference 2-302
rankfeatures function

reference 2-305
rebasecuts function

reference 2-309
redgreencmap function

reference 2-311
reroot method

reference 2-312
restrict function

reference 2-316
revgeneticcode function

reference 2-320
rna2dna function

reference 2-323

S
scfread function

reference 2-324
select method

reference 2-326
seq2regexp function

reference 2-329
seqcomplement function

reference 2-331
seqconsensus function

reference 2-332
seqdisp function

reference 2-334
seqdotplot function

reference 2-336
seqlinkage function

reference 2-338

Index-6

Index

seqlogo function
reference 2-340

seqmatch function
reference 2-344

seqneighjoin function
reference 2-345

seqpdist function
reference 2-348

seqprofile function
reference 2-355

seqrcomplement function
reference 2-358

seqreverse function
reference 2-359

seqshoworfs function
reference 2-360

seqshowwords function
reference 2-363

seqtool function
reference 2-366

seqwordcount function
reference 2-367

showalignment function
reference 2-369

showhmmprof function
reference 2-372

sptread function

reference 2-374
subtree method

reference 2-376
svmclassify function

reference 2-377
svmtrain function

reference 2-379
swalign function

reference 2-382

T
traceplot function

reference 2-386

V
view (biograph) method

reference 2-387
view (phytree) method

reference 2-388

W
weights method

reference 2-389

Index-7

	toc
	Functions – Categorical List
	Data Formats and Databases
	Sequence Conversion
	Sequence Statistics
	Sequence Utilities
	Pairwise Sequence Alignment
	Multiple Sequence Alignment
	Statistical Learning
	Protein Analysis
	Trace Tools
	Profile Hidden Markov Models
	Microarray File Formats
	Microarray Visualization
	Microarray Normalization and Filtering
	Microarray Utility Functions
	Mass Spectrometry Preprocessing and Visualization
	Scoring Matrices
	Phylogenetic Tree Tools
	Phylogenetic Tree Methods
	Graph Visualization Methods
	Tutorials, Demos, and Examples

	Functions — Alphabetical List
	Properties — Alphabetical List

	tables
	Mapping Amino Acid Letters to Integers
	Genetic Code
	Standard Genetic Code
	Amino Acid Lookup Table
	Nucleotide Lookup Table
	Properties for the Object Biograph
	Properties of the Nodes Property
	Properties of the Edge Property
	Genetic Code
	Mapping Amino Acid Integers to Letters
	Mapping Nucleotide Integers to Letters
	Genetic Code
	Mapping Nucleotide Letters to Integers
	Genetic Code
	Nucleotide Conversions
	Amino Acid Conversion

